赞
踩
在纹理中找瑕疵。基于高斯混合模型(GMM)分类器的纹理检查模型,适用于图像金字塔,可以分析纹理的多个频率范围。
【要求】训练样本,必须完美无瑕疵。
【步骤】
1、创建模型
2、加载训练样本
3、训练模型
每层金字塔都会训练一个GMM模型,并确定该层的'novelty_threshold'(区分有无瑕疵的阈值)。
参数的获取与设定
'patch_normalization':'weber'对亮度鲁棒,‘none’需要亮度作为评判(默认)
'patch_rotational_robustness':'true'对旋转鲁棒,'false'需要旋转作为评判(默认)
加快训练的方法:
① 缩放训练样本(zoom),通常模型对低分辨率纹理瑕疵检测效果更好。
② 调低 'gmm_em_threshold',但会降低模型准确度,训练终止的条件之一,0.001(默认)。
【重要参数】
'levels':设置具体的金字塔层参与训练,纹理越粗糙,则较低的金字塔层级越可省略。默认auto。
'sensitivity':灵敏度,影响'novelty_threshold'的计算结果。负值会导致更高的阈值,从而更少的发现缺陷。默认0。
'novelty_threshold',阈值,自动计算得到,若结果不理想,可以手动微调。
4、测试
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。