当前位置:   article > 正文

python 时间序列预测 —— prophet_python prophet(

python prophet(

prophet 安装

prophet 是facebook 开源的一款时间序列预测工具包,直接用 conda 安装 fbprophet 即可

prophet 的官网:https://facebook.github.io/prophet/

prophet 中文意思是“先知”

prophet 的输入一般具有两列:dsy

ds(datestamp) 列应为 Pandas 可以识别的日期格式,日期应为YYYY-MM-DD,时间戳则应为YYYY-MM-DD HH:MM:SS

y列必须是数值

数据集下载

Metro Interstate Traffic Volume Data Set
在这里插入图片描述
在这里插入图片描述

prophet 实战

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.metrics import mean_squared_error, mean_absolute_error

%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'  #显示中文
plt.rcParams['axes.unicode_minus'] = False  #显示负号
plt.rcParams['figure.dpi'] = 200
plt.rcParams['text.color'] = 'black'
plt.rcParams['font.size'] = 20
plt.style.use('ggplot')
print(plt.style.available)
# ['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', '_classic_test']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

pandas 读取 csv 数据

csv_files = 'Metro_Interstate_Traffic_Volume.csv'
df = pd.read_csv(csv_files)
df.set_index('date_time',inplace=True)
df.index = pd.to_datetime(df.index)
df.head()
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述
略扫一眼表格内容,主要有假期、气温、降雨、降雪、天气类型等因素,因变量是交通流量traffic_volume

df.info()
'''
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 48204 entries, 2012-10-02 09:00:00 to 2018-09-30 23:00:00
Data columns (total 8 columns):
holiday                48204 non-null object
temp                   48204 non-null float64
rain_1h                48204 non-null float64
snow_1h                48204 non-null float64
clouds_all             48204 non-null int64
weather_main           48204 non-null object
weather_description    48204 non-null object
traffic_volume         48204 non-null int64
dtypes: float64(3), int64(2), object(3)
memory usage: 3.3+ MB
'''

df.describe()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

在这里插入图片描述

画个图

原来少了一点数据,不过影响不大

traffic = df[['traffic_volume']]
traffic[:].plot(style='--', figsize=(15,5), title='traffic_volume')
plt.show()
  • 1
  • 2
  • 3

在这里插入图片描述

拆分数据集

知识点:pandas 中筛选日期

traffic_train = traffic.loc[(traffic.index >='2017-01') & (traffic.index <= '2018-03')].copy()
traffic_test = traffic.loc[traffic.index > '2018-03'].copy()
_ = traffic_test.rename(columns={'traffic_volume': 'TEST SET'})\
    .join(traffic_train.rename(columns={'traffic_volume': 'TRAINING SET'}),how='outer') \
    .plot(figsize=(20,5), title='traffic_volume', style='.')
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述
因为是逐小时统计的数据,只选两年的量就已经够多了

从日期中拆分特征

虽然 prophet 不需要我们手工提取特征,但我们还是可以自己试试

def create_features(df, label=None):
    """
    Creates time series features from datetime index.
    """
    df = df.copy()
    df['date'] = df.index
    df['hour'] = df['date'].dt.hour
    df['dayofweek'] = df['date'].dt.dayofweek
    df['quarter'] = df['date'].dt.quarter
    df['month'] = df['date'].dt.month
    df['year'] = df['date'].dt.year
    df['dayofyear'] = df['date'].dt.dayofyear
    df['dayofmonth'] = df['date'].dt.day
    df['weekofyear'] = df['date'].dt.weekofyear
    
    X = df[['hour','dayofweek','quarter','month','year',
           'dayofyear','dayofmonth','weekofyear']]
    if label:
        y = df[label]
        return X, y
    return X

X, y = create_features(traffic, label='traffic_volume')
features_and_target = pd.concat([X, y], axis=1)
features_and_target.head()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

在这里插入图片描述
自己体会一下不同特征对预测变量的影响

sns.pairplot(features_and_target.dropna(),
             hue='hour',
             x_vars=['hour','dayofweek',
                     'dayofmonth','month'],
             y_vars='traffic_volume',
             height=5,
             plot_kws={'alpha':0.15, 'linewidth':0}
            )
plt.suptitle('Traffic Volume by Hour, Day of Week, Day of Month and Month')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述
上面的 pairplot 可以得出什么信息呢?

首先颜色是按照小时取,所以每种颜色代表一个时辰

后三幅图的竖条上的颜色分布代表不同时间段的流量分布

有意义的信息主要来自散点的分布范围,可以看出:

  1. 每日的车流量呈现 M 型,意味着上下班高峰
  2. 一周中周末车要少些
  3. 一个月中有几天的下限要低于其它日子,这应该是周末
  4. 一年中有7月和9月的下限要低于其它月份,这应该和天气或者节假日有什么关联

使用 prophet 训练和预测

from fbprophet import Prophet

# Setup and train model and fit
model = Prophet()

model.fit(traffic_train.reset_index().rename(columns={'date_time':'ds','traffic_volume':'y'}))

traffic_test_pred = model.predict(df=traffic_test.reset_index() \
                                   .rename(columns={'date_time':'ds'}))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

画出预测结果

f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(15)
ax.scatter(traffic_test.index, traffic_test['traffic_volume'], color='r')
fig = model.plot(traffic_test_pred, ax=ax)
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述
造成这种现象是因为:

  1. 训练数据太多,使得模型没有把握最近趋势
  2. 预测范围太大,误差随时间放大

感兴趣的朋友可以自己玩玩

prophet 学到了什么

从下图可以看出:

  1. 总体趋势:下行
  2. 每周趋势:工作日流量大、周末流量低
  3. 每日趋势:早晚上下班高峰,所以每天流量基本呈现 M 型曲线
fig = model.plot_components(traffic_test_pred)
  • 1

在这里插入图片描述

放大图

看看模型对测试集中第一个月的预测情况:

# Plot the forecast with the actuals
f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(15)
plt.plot(traffic_test.index, traffic_test['traffic_volume'], color='r')
fig = model.plot(traffic_test_pred, ax=ax)
ax.set_xbound(lower='03-01-2018',
              upper='04-01-2018')
ax.set_ylim(-1000, 8000)
plot = plt.suptitle('Forecast vs Actuals')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述
是不是有模有样的

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/293085
推荐阅读
相关标签