当前位置:   article > 正文

论文中的一些数学符号表示_论文中ab是点乘还是乘法

论文中ab是点乘还是乘法
向量点乘

向量的点乘,也叫向量的内积、数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。

对于向量 a a a b b b A = [ a 1 , a 2 , … a n ] A=\left[a_{1}, a_{2}, \ldots a_{n}\right] \quad A=[a1,a2,an] B = [ b 1 , b 2 , … b n ] B=\left[b_{1}, b_{2}, \ldots b_{n}\right] \quad B=[b1,b2,bn]

A ⋅ B = ∑ a i b i \mathrm{A} \cdot \mathbf{B}=\sum a_{i} b_{i} AB=aibi
或者:
A ⋅ B = ∣ A ∥ B ∣ cos ⁡ θ \mathbf{A} \cdot \mathbf{B}=|\mathbf{A} \| \mathbf{B}| \cos \theta AB=ABcosθ

向量叉乘

向量的叉乘,又叫向量积、外积、叉积。结果是一个和已有两个向量都垂直的向量。以三维向量为例

A × B = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − b 2 a 3 ) i − ( a 1 b 3 − b 1 a 3 ) j + ( a 1 b 2 − b 1 a 2 ) k A\times B =\left|

ijka1a2a3b1b2b3
\right|=\left(a_{2} b_{3}-b_{2} a_{3} \right) i-\left(a_{1} b_{3}-b_{1}a_{3} \right) j+\left(a_{1} b_{2}-b_{1}a_{2}\right) k A×B=ia1b1ja2b2ka3b3=(a2b3b2a3)i(a1b3b1a3)j+(a1b2b1a2)k

其中: i = ( 1 , 0 , 0 ) j = ( 0 , 1 , 0 ) k = ( 0 , 0 , 1 ) i=(1,0,0) \quad \mathrm{j}=(0,1,0) \quad \mathrm{k}=(0,0,1) i=(1,0,0)j=(0,1,0)k=(0,0,1)

张量(矩阵)点乘

张量(矩阵)的点乘,又叫哈达马积(Hadamard product),矩阵对应位置的元素相乘

m × n m \times n m×n 矩阵 A = [ a i j ] A=\left[a_{i j}\right] A=[aij] m × n m \times n m×n 矩阵 B = [ b i j ] B=\left[b_{i j}\right] B=[bij] 的Hadamard积记作 A ∗ B A * B AB

其元素定义为两个矩阵对应元素的乘积 ( A ∗ B ) i j = a i j b i j (A * B)_{i j}=a_{i j} b_{i j} (AB)ij=aijbij ,例如
( 1 3 2 1 0 0 1 2 2 ) ∗ ( 0 0 2 7 5 0 2 1 1 ) = ( 1 ⋅ 0 3 ⋅ 0 2 ⋅ 2 1 ⋅ 7 0 ⋅ 5 0 ⋅ 0 1 ⋅ 2 2 ⋅ 1 2 ⋅ 1 ) = ( 0 0 4 7 0 0 2 2 2 ) \left(

132100122
\right) *\left(
002750211
\right)=\left(
103022170500122121
\right)=\left(
004700222
\right) 111302202072051201=101712300521220021=072002402

张量(矩阵)克罗内克乘积

克罗内克积是两个任意大小的矩阵间的运算,也叫直积或张量积。计算过程如下例所示:
( 1 2 3 1 ) ⊗ ( 0 3 2 1 ) = ( 1 ⋅ 0 1 ⋅ 3 2 ⋅ 0 2 ⋅ 3 1 ⋅ 2 1 ⋅ 1 2 ⋅ 2 2 ⋅ 1 3 ⋅ 0 3 ⋅ 3 1 ⋅ 0 1 ⋅ 3 3 ⋅ 2 3 ⋅ 1 1 ⋅ 2 1 ⋅ 1 ) = ( 0 3 0 6 2 1 4 2 0 9 0 3 6 3 2 1 ) \left(

1231
\right) \otimes\left(
0321
\right)=\left(
10132023121122213033101332311211
\right)=\left(
0306214209036321
\right) (1321)(0231)=10123032131133312022101223211311=0206319304026231

拼接

张量(矩阵)的拼接可以按照不同的维度拼接

按照第一维度拼接:

( 1 2 3 1 ) ⊕ ( 0 3 2 1 ) = ( 1 2 0 3 3 1 2 1 ) \left(

1231
\right)\oplus\left(
0321
\right)=\left(
12033121
\right) (1321)(0231)=(13210231)

按照第二维度拼接:

( 1 2 3 1 ) ⊕ ( 0 3 2 1 ) = ( 1 2 3 1 0 3 2 1 ) \left(

1231
\right)\oplus\left(
0321
\right)=\left(
12310321
\right) (1321)(0231)=13022131

此外,数乘表示一个标量乘以一个矩阵或者向量中的每个元素

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/334482
推荐阅读
相关标签
  

闽ICP备14008679号