当前位置:   article > 正文

NLP(五十五)tiktoken的使用

tiktoken

  tiktokenOpenAI于近期开源的Python第三方模块,该模块主要实现了tokenizer的BPE(Byte pair encoding)算法,并对运行性能做了极大的优化。本文将介绍tiktoken模块的使用。

tiktoken简介

  BPE(Byte pair encoding)算法是NLP中常见的tokenizer方式,关于其介绍和实现原理,读者可参考深入理解NLP Subword算法:BPE、WordPiece、ULM
  tiktoken已开源至Github,访问网址为:https://github.com/openai/tiktoken,tiktoken会比其它开源的tokenizer库运行快3-6倍,以下是它与hugging face的tokenizer库的性能比较:
不同线程数下tiktoken与hugging face的性能比较
以上结果是使用GPT-2 tokenizer在1G文本上进行的性能测试,使用的GPT2TokenizerFast来源于tokenizers==0.13.2, transformers==4.24.0 , tiktoken==0.2.0

简单使用

  tiktoken的Encodings(编码方式)用于展示文本是如何被转化为token的。不同的模型使用不同类型的编码方式。tiktoken支持如下三种OpenAI模型的编码方式:

编码方式OpenAI模型
cl100k_basegpt-4, gpt-3.5-turbo, text-embedding-ada-002
p50k_baseCodex模型,如 text-davinci-002, text-davinci-003
r50k_base (或gpt2)GPT-3模型,如davinci

可以通过如下代码来获取模型的编码方式:

# -*- coding: utf-8 -*-
import tiktoken

# get encoding name
print(tiktoken.encoding_for_model('gpt-3.5-turbo'))
  • 1
  • 2
  • 3
  • 4
  • 5

输出结果为:

<Encoding 'cl100k_base'>
  • 1

注意,p50k_baser50k_base基本类似,在非代码应用中,它们通常会给出相同的token。
  cl100k_base中的100k代码该编码方式中的词汇表数量大约为100k,词汇表文件为cl100k_base_vocab.json,下载网址为:https://raw.githubusercontent.com/weikang-wang/ChatGPT-Vocabulary/main/cl100k_base_vocab.json,词汇数量为100256,如此庞大的词汇数量使得OpenAI模型在多种语言上都有不俗的表现。

编码与解码

  编码(encode)是指将文本映射为token的数字列表,解码(decode)是指将token的数字列表转化为文本。参看以下的Python代码实现:

# -*- coding: utf-8 -*-
import tiktoken

# simple test
enc = tiktoken.get_encoding("cl100k_base")
print(enc.encode("hello world") == [15339, 1917])
print(enc.decode([15339, 1917]) == "hello world")
print(enc.encode("hello <|endoftext|>", allowed_special="all") == [15339, 220, 100257])

# encode
tokens = enc.encode("tiktoken is great!")
print(tokens)
print(len(tokens))

# decode
print(enc.decode([83, 1609, 5963, 374, 2294, 0]))

# chinese encode
tokens = enc.encode("大模型是什么?")
print(tokens)
print(len(tokens))

# chinese decode
print(enc.decode([27384, 54872, 25287, 21043, 6271, 222, 82696, 11571]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

输出结果如下:

True
True
True
[83, 1609, 5963, 374, 2294, 0]
6
tiktoken is great!
[27384, 54872, 25287, 21043, 6271, 222, 82696, 11571]
8
大模型是什么?
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

计算token数量

  OpenAI模型中token数量较为关键,毕竟,OpenAI接口调用的收费方式是按照token数量来的。关于OpenAI接口调用的收费方式,可以参考网站:https://openai.com/pricing
  下面是用tiktoken来计算token数量的Python代码:

# -*- coding: utf-8 -*-
import tiktoken


def num_tokens_from_string(string: str, encoding_name: str) -> int:
    # Returns the number of tokens in a text string.
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(string))
    return num_tokens


print(num_tokens_from_string('tiktoken is great!', 'cl100k_base'))
print(num_tokens_from_string('大模型是什么?', 'cl100k_base'))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

输出结果为:

6
8
  • 1
  • 2

  在hugging face网站上,已经有人实现了tiktoken的token数量计算,访问网站为:https://huggingface.co/spaces/JacobLinCool/tiktoken-calculator ,页面如下:
tiktoken的token数量计算
  在对话补全(chat completion)场景中计算token数量,以模型gpt-3.5-turbo为例,实现Python代码如下:

# -*- coding: utf-8 -*-
import tiktoken
import openai


def num_tokens_from_messages(messages):
    # Returns the number of tokens used by a list of messages.
    encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
    tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
    tokens_per_name = -1  # if there's a name, the role is omitted
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens

example_messages = [
    {
        "role": "system",
        "content": "You are a helpful, pattern-following assistant that translates corporate jargon into plain English.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "New synergies will help drive top-line growth.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Things working well together will increase revenue.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Let's talk later when we're less busy about how to do better.",
    },
    {
        "role": "user",
        "content": "This late pivot means we don't have time to boil the ocean for the client deliverable.",
    },
]


# example token count from the function defined above
print(f"{num_tokens_from_messages(example_messages)} prompt tokens counted by num_tokens_from_messages().")
# example token count from the OpenAI API
openai.api_key = ""
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=example_messages,
    temperature=0,
    max_tokens=1
)
print(f'{response["usage"]["prompt_tokens"]} prompt tokens counted by the OpenAI API.')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

输出结果如下:

127 prompt tokens counted by num_tokens_from_messages().
127 prompt tokens counted by the OpenAI API.
  • 1
  • 2

可见,在num_tokens_from_messages中,对于输入messages中的每条message,token数量先加上4,然后对字典中的value值进行token数量统计,如果此时对应的key为name,则token数量减1,因为要忽略role字段的token数量。在模型gpt-3.5-turbo中,num_tokens_from_messages函数与OpenAI对话补全中的token数量计算方式是一致的。

总结

  本文介绍了tiktoken模型和它的简单使用,以及token数量计算方式。

参考文献

  1. 深入理解NLP Subword算法:BPE、WordPiece、ULM: https://zhuanlan.zhihu.com/p/86965595
  2. tiktoken的Github网址:https://github.com/openai/tiktoken
  3. tiktoken-calculator: https://huggingface.co/spaces/JacobLinCool/tiktoken-calculator
  4. How_to_count_tokens_with_tiktoken.ipynb: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/345886
推荐阅读
相关标签
  

闽ICP备14008679号