赞
踩
import os.path
from os import listdir
import numpy as np
import pandas as pd
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import AdaptiveAvgPool2d
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([transforms.ToTensor(), normalize]) # 转换
class DogDataset(Dataset): # 定义变量 def __init__(self, img_paths, img_labels, size_of_images): self.img_paths = img_paths self.img_labels = img_labels self.size_of_images = size_of_images # 多少长图片 def __len__(self): return len(self.img_paths) # 打开每组图片并处理每张图片 def __getitem__(self, index): PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images) TENSOR_IMAGE = transform(PIL_IMAGE) label = self.img_labels[index] return TENSOR_IMAGE, label print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train'))) print(len(pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv'))) print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\test'))) train_paths = [] test_paths = [] labels = [] # 训练集图片路径 train_paths_lir = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train' for path in listdir(train_paths_lir): train_paths.append(os.path.join(train_paths_lir, path)) # 测试集图片路径 labels_data = pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv') labels_data = pd.DataFrame(labels_data) # 把字符标签离散化,因为数据有120种狗,不离散化后面把数据给模型时会报错:字符标签过多。把字符标签从0-119编号 size_mapping = {} value = 0 size_mapping = dict(labels_data['breed'].value_counts()) for kay in size_mapping: size_mapping[kay] = value value += 1 # print(size_mapping) labels = labels_data['breed'].map(size_mapping) labels = list(labels) # print(labels) print(len(labels)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2) train_set = DogDataset(X_train, y_train, (32, 32)) test_set = DogDataset(X_test, y_test, (32, 32)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=64) test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)
class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( nn.Linear(16 * 5 * 5, 120), nn.ReLU(), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 120) ) def forward(self, x): batch_size = x.shape[0] x = self.features(x) x = x.view(batch_size, -1) x = self.classifier(x) return x model = LeNet().to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters()) TRAIN_LOSS = [] # 损失 TRAIN_ACCURACY = [] # 准确率
def train(epoch): model.train() epoch_loss = 0.0 # 损失 correct = 0 # 精确率 for batch_index, (Data, Label) in enumerate(train_loader): # 扔到GPU中 Data = Data.to(device) Label = Label.to(device) output_train = model(Data) # 计算损失 loss_train = criterion(output_train, Label) epoch_loss = epoch_loss + loss_train.item() # 计算精确率 pred = torch.max(output_train, 1)[1] train_correct = (pred == Label).sum() correct = correct + train_correct.item() # 梯度归零、反向传播、更新参数 optimizer.zero_grad() loss_train.backward() optimizer.step() print('Epoch: ', epoch, 'Train_loss: ', epoch_loss / len(train_set), 'Train correct: ', correct / len(train_set))
和训练集差不多。
def test(): model.eval() correct = 0.0 test_loss = 0.0 with torch.no_grad(): for Data, Label in test_loader: Data = Data.to(device) Label = Label.to(device) test_output = model(Data) loss = criterion(test_output, Label) pred = torch.max(test_output, 1)[1] test_correct = (pred == Label).sum() correct = correct + test_correct.item() test_loss = test_loss + loss.item() print('Test_loss: ', test_loss / len(test_set), 'Test correct: ', correct / len(test_set))
epoch = 10
for n_epoch in range(epoch):
train(n_epoch)
test()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。