Matlab fmincon函数用法作者:长笛人倚楼Gloria这个函数在之前优化工具箱一文中已经介绍过,由于其应用广泛,所以这里通过实例单独整理一下其用法。一、基本介绍求解问题的标准型为min F(X)s.tAX AeqX = _fmincon 打印迭代过程">
当前位置:   article > 正文

[转载]Matlab fmincon函数用法_fmincon 打印迭代过程

fmincon 打印迭代过程
这个函数在之前优化工具箱一文中已经介绍过,由于其应用广泛,所以这里通过实例单独整理一下其用法。
一、基本介绍
求解问题的标准型为
min F(X)
s.t
AX <= b
AeqX = beq
G(x) <= 0
Ceq(X) = 0
VLB <= X <= VUB
 
其中X为n维变元向量,G(x)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划,二次规划中相同,用Matlab求解上述问题,基本步骤分为三步:
1. 首先建立M文件fun.m定义目标函数F(X):
function f = fun(X);
f = F(X)
 
2. 若约束条件中有非线性约束:G(x) <= 0 或 Ceq(x) = 0,则建立M文件nonlcon.m定义函数G(X)和Ceq(X);
function [G, Ceq] = nonlcon(X)
G = ...
Ceq = ...
 
3. 建立主程序,非线性规划求解的函数时fmincon,命令的基本格式如下:
[转载]Matlab <wbr>fmincon函数用法
 
注意:
(1)fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options 参数的GradObj设置为'on'),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法,当既有等式约束又有梯度约束时,使用中型算法。
(2)fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中 求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。
(3)fmincon函数可能会给出局部最优解,这与初值X0的选取有关。
 
二、实例
1. 第一种方法,直接设置边界
主要是指直接设置A,b等参数。
例1:min f = -x1 - 2*x2 + 1/2*x1^2 + 1/2 * x2^2
2*x1 + 3*x2 <= 6
x1 + 4*x2 <= 5
x1, x2 >= 0
 
function ex131101
 
x0 [1; 1];
[2, 3; 1, 4];
[6, 5];
Aeq [];
beq [];
VLB [0; 0];
VUB [];
[x, fval] fmincon(@fun3, x0, A, b, Aeq, beq, VLB, VUB)
 
function fun3(x)
-x(1) 2*x(2) (1/2)*x(1)^2 (1/2)*x(2)^2;
 
2. 第二种方法,通过函数设置边界
例2: min f(x) = exp(x1) * (4*x1^2 + 2*x2^2 + 4*x1*x2 + 2*x2 + 1)
x1 + x2 = 0
1.5 + x1 * x2 - x1 - x2   <= 0
-x1*x2 - 10 <= 0
function youh3
clc;
x0 [-1, 1];
[];b [];
Aeq []; beq [];
vlb []; vub [];
[x, fval] fmincon(@fun4, x0, A, b, Aeq, beq, vlb, vub, @mycon)
 
function fun4(x);
exp(x(1)) (4*x(1)^2 2*x(2)^2 4*x(1)*x(2) 2*x(2) 1);
 
function [g, ceq] mycon(x)
[1.5 x(1)*x(2) x(1) x(2); -x(1)*x(2) 10];
ceq [x(1) x(2)];
 
3. 进阶用法,增加梯度以及传递参数
这里用无约束优化函数fminunc做示例,对于fmincon方法相同,只需将边界项设为空即可。
(1)定义目标函数
function [J, grad] costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
  COSTFUNCTION(theta, X, y) computes the cost of using theta as the
  parameter for logistic regression and the gradient of the cost
  w.r.t. to the parameters.
 
Initialize some useful values
length(y); number of training examples
 
You need to return the following variables correctly 
0;
grad zeros(size(theta));
 
====================== YOUR CODE HERE ======================
Instructions: Compute the cost of particular choice of theta.
              You should set to the cost.
              Compute the partial derivatives and set grad to the partial
              derivatives of the cost w.r.t. each parameter in theta
%
Note: grad should have the same dimensions as theta
%
 
theta;
hx ./ (1 exp(-z));
1/m sum([-y' log(hx) (1 y)' log(1 hx)]);
 
for  1: length(theta)
    grad(j) 1/m sum((hx y)' X(:,j));
end
 
 
=============================================================
 
end
 
(2)优化求极小值
 Set options for fminunc
options optimset('GradObj''on''MaxIter'400);
 
 Run fminunc to obtain the optimal theta
 This function will return theta and the cost 
[theta, cost] ...
    fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
 
[theta, cost] ...
  fminunc(@(t)(costFunction(t, X, y)), initial_theta);
Print theta to screen
fprintf('Cost at theta found by fminunc: %fn'cost);
fprintf('theta: n');
fprintf(%f n'theta);
 
 
 
 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/350625
推荐阅读
相关标签
  

闽ICP备14008679号