赞
踩
长短期记忆网络 LSTM(long short-term memory)是 RNN 的一种变体,其核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。信息的添加和移除我们通过“门”结构来实现,“门”结构在训练过程中会去学习该保存或遗忘哪些信息。
f
t
=
σ
(
W
f
⋅
[
h
t
−
1
,
x
t
]
+
b
f
)
f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)
ft=σ(Wf⋅[ht−1,xt]+bf)
i
t
=
σ
(
W
i
⋅
[
h
t
−
1
,
x
t
]
+
b
i
)
C
t
~
=
tanh
(
W
C
⋅
[
h
t
−
1
,
x
t
]
+
b
C
)
i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \\ \tilde{C_t} = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)
it=σ(Wi⋅[ht−1,xt]+bi)Ct~=tanh(WC⋅[ht−1,xt]+bC)
C
t
=
f
t
⨀
C
t
−
1
+
i
t
⨀
C
t
~
注
:
⨀
为
H
a
d
a
m
a
r
d
p
r
o
d
u
c
t
,
即
对
应
点
相
乘
C_t = f_t \bigodot C_{t-1} + i_t \bigodot \tilde{C_t} \\ 注:\bigodot 为 \ Hadamard \ product,即对应点相乘
Ct=ft⨀Ct−1+it⨀Ct~注:⨀为 Hadamard product,即对应点相乘
o
t
=
σ
(
W
o
⋅
[
h
t
−
1
,
x
t
]
+
b
o
)
h
t
=
o
t
⨀
tanh
(
C
t
)
o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \\ h_t = o_t \bigodot \tanh(C_t)
ot=σ(Wo⋅[ht−1,xt]+bo)ht=ot⨀tanh(Ct)
f t = σ ( W f ⋅ [ C t − 1 , h t − 1 , x t ] + b f ) i t = σ ( W i ⋅ [ C t − 1 , h t − 1 , x t ] + b i ) C t ~ = tanh ( W C ⋅ [ h t − 1 , x t ] + b C ) C t = f t ⨀ C t − 1 + ( 1 − f t ) ⨀ C t ~ o t = σ ( W o ⋅ [ C t , h t − 1 , x t ] + b o ) h t = o t ⨀ tanh ( C t ) f_t = \sigma(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f) \\ i_t = \sigma(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i) \\ \tilde{C_t} = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \\ C_t = f_t \bigodot C_{t-1} + (1 - f_t) \bigodot \tilde{C_t} \\ o_t = \sigma(W_o \cdot [C_t, h_{t-1}, x_t] + b_o) \\ h_t = o_t \bigodot \tanh(C_t) ft=σ(Wf⋅[Ct−1,ht−1,xt]+bf)it=σ(Wi⋅[Ct−1,ht−1,xt]+bi)Ct~=tanh(WC⋅[ht−1,xt]+bC)Ct=ft⨀Ct−1+(1−ft)⨀Ct~ot=σ(Wo⋅[Ct,ht−1,xt]+bo)ht=ot⨀tanh(Ct)
z
t
=
σ
(
W
z
⋅
[
h
t
−
1
,
x
t
]
+
b
z
)
r
t
=
σ
(
W
r
⋅
[
h
t
−
1
,
x
t
]
+
b
r
)
h
t
~
=
tanh
(
W
h
⋅
[
r
t
⨀
h
t
−
1
,
x
t
]
,
b
h
)
h
t
=
(
1
−
z
t
)
⨀
h
t
−
1
+
z
t
⨀
h
t
~
z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \\ r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \\ \tilde{h_t} = \tanh(W_h \cdot [r_t \bigodot h_{t-1}, x_t], b_h) \\ h_t = (1 - z_t) \bigodot h_{t-1} + z_t \bigodot \tilde{h_t}
zt=σ(Wz⋅[ht−1,xt]+bz)rt=σ(Wr⋅[ht−1,xt]+br)ht~=tanh(Wh⋅[rt⨀ht−1,xt],bh)ht=(1−zt)⨀ht−1+zt⨀ht~
注:一般这里可以不用考虑偏置,原论文中也没有偏置
import torch
import torch.nn as nn
# 输入数据 x 的向量维数 10, 设定 LSTM 隐藏层的特征维度 20, 此 model 用 2 个 LSTM 层
rnn = nn.LSTM(10, 20, 2)
input = torch.randn(5, 3, 10) # input(seq_len, batch, input_size)
h0 = torch.randn(2, 3, 20) # h_0(num_layers * num_directions, batch, hidden_size)
c0 = torch.randn(2, 3, 20) # c_0(num_layers * num_directions, batch, hidden_size)
# output(seq_len, batch, hidden_size * num_directions)
# h_n(num_layers * num_directions, batch, hidden_size)
# c_n(num_layers * num_directions, batch, hidden_size)
output, (hn, cn) = rnn(input, (h0, c0))
# torch.Size([5, 3, 20]) torch.Size([2, 3, 20]) torch.Size([2, 3, 20])
print(output.size(), hn.size(), cn.size())
补充:RNN, LSTM & GRU、pytorch中lstm参数与案例理解、LSTM这一篇就够了、从RNN到LSTM再到GRU、LSTM论文翻译-《Understanding LSTM Networks》、Convolutional LSTM Network
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。