赞
踩
自编码器(Autoencoder)是一种无监督学习的神经网络模型,用于学习数据的低维表示。它由编码器(Encoder)和解码器(Decoder)两部分组成,通过将输入数据压缩到低维编码空间,再从编码空间中重构输入数据。
自编码器的基本结构如下:
1.编码器(Encoder):接收输入数据,将其映射到低维编码空间。编码器由一系列隐藏层组成,通常逐渐减小维度以进行特征提取和数据压缩。
2.解码器(Decoder):接收编码器的输出,将编码后的数据映射回原始输入空间。解码器的结构与编码器相反,逐渐增加维度并尝试重构原始数据。
3.重构损失(Reconstruction Loss):自编码器的目标是尽可能准确地重构输入数据。因此,使用重构损失函数来衡量原始数据与重构数据之间的差异,如均方误差(MSE)或交叉熵损失。
1.将输入数据提供给编码器,获得低维编码。
2.将编码结果传递给解码器,尝试重构输入数据。
3.计算重构损失,并通过反向传播优化网络参数,使重构误差最小化。
重复上述步骤,直到自编码器能够准确地重构输入数据。
1.数据降维:自编码器可以学习数据的低维表示,有助于数据的压缩和降维。
2.特征学习:通过训练自编码器,可以学习到数据的有意义的特征表示,用于后续的监督学习任务。
3.异常检测:自编码器可以学习数据的正常分布,从而用于检测异常或异常数据的重构错误。
import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import numpy as np # torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 10 BATCH_SIZE = 64 LR = 0.005 # learning rate DOWNLOAD_MNIST = True N_TEST_IMG = 5 # Mnist digits dataset train_data = torchvision.datasets.MNIST( root='./mnist/', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, # download it if you don't have it ) # plot one example # 训练数据 print(train_data.train_data.size()) # (60000, 28, 28) # 训练标签 print(train_data.train_labels.size()) # (60000) plt.imshow(train_data.train_data[2].numpy(), cmap='gray') plt.title('%i' % train_data.train_labels[2]) plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28) train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) class AutoEncoder(nn.Module): def __init__(self): super(AutoEncoder, self).__init__() # 编码器 self.encoder = nn.Sequential( nn.Linear(28*28, 128), nn.Tanh(), nn.Linear(128, 64), nn.Tanh(), nn.Linear(64, 12), nn.Tanh(), nn.Linear(12, 3), # compress to 3 features which can be visualized in plt ) # 解码器 self.decoder = nn.Sequential( nn.Linear(3, 12), nn.Tanh(), nn.Linear(12, 64), nn.Tanh(), nn.Linear(64, 128), nn.Tanh(), nn.Linear(128, 28*28), nn.Sigmoid(), # compress to a range (0, 1) ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return encoded, decoded autoencoder = AutoEncoder() optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR) loss_func = nn.MSELoss() # initialize figure f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2)) plt.ion() # continuously plot # original data (first row) for viewing view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255. for i in range(N_TEST_IMG): a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(()) # 训练 for epoch in range(EPOCH): for step, (x, b_label) in enumerate(train_loader): b_x = x.view(-1, 28*28) # batch x, shape (batch, 28*28) b_y = x.view(-1, 28*28) # batch y, shape (batch, 28*28) encoded, decoded = autoencoder(b_x) # 比对解码出来的数据和原始数据,计算loss loss = loss_func(decoded, b_y) # mean square error optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 100 == 0: print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy()) # plotting decoded image (second row) _, decoded_data = autoencoder(view_data) for i in range(N_TEST_IMG): a[1][i].clear() a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray') a[1][i].set_xticks(()) a[1][i].set_yticks(()) plt.draw() plt.pause(0.05) plt.ioff() plt.show() # visualize in 3D plot view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255. encoded_data, _ = autoencoder(view_data) fig = plt.figure(2) ax = Axes3D(fig) X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy() values = train_data.train_labels[:200].numpy() for x, y, z, s in zip(X, Y, Z, values): c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c) ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max()) plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。