赞
踩
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain
prompt= ChatPromptTemplate.from_template("tell me the weather of {topic}")
str = prompt.format(topic="shenzhen")
print(str)
打印出:
Human: tell me the weather of shenzhen
最终和llm一起使用:
import ChatGLM from langchain.chains import LLMChain from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_community.tools.tavily_search import TavilySearchResults from langchain.chains import LLMMathChain prompt = ChatPromptTemplate.from_template("who is {name}") # str = prompt.format(name="Bill Gates") # print(str) llm = ChatGLM.ChatGLM_LLM() output_parser = StrOutputParser() chain05 = prompt| llm | output_parser print(chain05.invoke({"name": "Bill Gates"}))
import ChatGLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages([ ("system", "You are a helpful AI bot. Your name is {name}."), ("human", "Hello, how are you doing?"), ("ai", "I'm doing well, thanks!"), ("human", "{user_input}"), ]) llm = ChatGLM.ChatGLM_LLM() output_parser = StrOutputParser() chain05 = prompt| llm | output_parser print(chain05.invoke({"name": "Bob","user_input": "What is your name"}))
import ChatGLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate llm = ChatGLM.ChatGLM_LLM() prompt = ChatPromptTemplate.from_messages([ ("system", "You are a helpful AI bot. Your name is {name}."), ("human", "Hello, how are you doing?"), ("ai", "I'm doing well, thanks!"), ("human", "{user_input}"), ]) # a = prompt.format_prompt({name="Bob"}) a = prompt.format_prompt(name="Bob",user_input="What is your name") print(a) print(llm.invoke(a))
以下也是一个例子:
import gradio as gr from langchain_core.prompts import ChatPromptTemplate from LLMs import myllm from langchain_core.output_parsers import StrOutputParser llm = myllm() parser = StrOutputParser() template = """{question}""" prompt = ChatPromptTemplate.from_template(template) chain = prompt | llm | parser def greet3(name): return chain.invoke({"question": name}) def alternatingly_agree(message, history): return greet3(message) gr.ChatInterface(alternatingly_agree).launch(server_name="0.0.0.0",share=False)
参考: https://python.langchain.com/docs/modules/model_io/prompts/quick_start
https://python.langchain.com/docs/modules/model_io/prompts/composition
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。