赞
踩
在本文中,我们将介绍如何使用Transformer模型在WMT数据集上进行端到端的机器翻译任务。我们将首先介绍数据预处理,然后详细讲解Transformer模型的构建和训练,最后进行模型评估。
首先,我们需要下载WMT数据集并解压。WMT数据集包含了多种语言对的平行语料库,本例中我们将以英语-德语翻译任务为例。
- import os
- import requests
- import zipfile
-
- url = "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz"
- filename = os.path.basename(url)
- download_path = f"./{filename}"
-
- # 下载数据集
- with open(download_path, "wb") as f:
- response = requests.get(url, stream=True)
- total_length = response.headers.get('content-length')
- if total_length is None:
- f.write(response.content)
- else:
- downloaded = 0
- total_length = int(total_length)
- for data in response.iter_content(chunk_size=max(int(total_length / 1000), 1024 * 1024)):
- downloaded += len(data)
- f.write(data)
- do
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。