赞
踩
1、引入参数代码
需要那个参数再回来查看
parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") #输出的地址 ## Other parameters parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") #有cuda时候你是否选择关闭cuda parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") #是否进行分布式训练: parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") #执行向后/更新过程之前要累积的更新步骤数。 parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args()
2、三个标准数据集的预处理函数,打包成字典
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mrpc": MrpcProcessor,
}
num_labels_task = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
}
3、调用gpu,没有gpu就调用cpu进行训练
if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") #如果有cuda且不需要关闭cuda就使用gpu,不然就用cpu n_gpu = torch.cuda.device_count() #计算有几个gpu,多gpu进行分布式训练 else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: #执行向后/更新过程之前要累积的更新步骤数,如果小于1是错误的 raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) #设置随机种子使得实验结果可以浮现 random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) #如果有gpu,也要设置随机种子 if n_gpu > 0: torch.cuda.manual_seed_all(args.seed)
4、进行判断,只有训练和预测两个过程,二选其一;以及训练阶段输出列表不能已经建立完整
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
5、数据集的样子
数据集里第一列是label,CoLA中label一共是2类:0和1。第三列是文本训练集。每个训练集的数据中只有一句话。
6、提取数据文本和label。同时,guid给每一条数据都加上一个单独的id。
class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") #读入train.tsv的文件,保存到train为文件名的文件中 def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") #读入dev.tsv的文件,保存到dev为文件名的文件中 def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples #返回带有id、文本和标签的样本 class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label
补充:
read_csv() 读入逗号分隔文件;
read_csv2() 读取分号分隔文件;
read_tsv() 读取制表符分隔文件;
read_delim() 读取使用任意分隔符的文件
7、调用预训练的分词器
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
作用:
class BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece""" def __init__(self, vocab_file, do_lower_case=True, max_len=None, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): #判断vocab_file是否为文件,也就决定了它是否能被加载 if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) #加载词汇表 self.vocab = load_vocab(vocab_file) #建立词汇和编号的对应关系词典 self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) #加载分词器 self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, never_split=never_split) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) self.max_len = max_len if max_len is not None else int(1e12) def tokenize(self, text): # 进行分词 split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" #用词典将token转化为序列 ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: raise ValueError( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids def convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" #通过self.ids_to_tokens(里面建立好的词典)将id转化为token tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens #通过类方法加载预训练模型 @classmethod def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ #内部保存着已有的预训练模型的下载地址 if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name] else: vocab_file = pretrained_model_name #os.listdir()用于返回一个由文件名和目录名组成的列表 if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except FileNotFoundError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。