当前位置:   article > 正文

线性矩阵不等式LMI与李雅普诺夫Lyapunov稳定性_lyapunov矩阵 不等式

lyapunov矩阵 不等式

线性矩阵不等式(Linear Matrix Inequality,LMI)

形式为
LMI ( y ) = A 0 + A 1 y 1 + A 2 y 2 + ⋯ ≥ 0 \text{LMI}(y)=A_0+A_1y_1+A_2y_2+\cdots \geq 0 LMI(y)=A0+A1y1+A2y2+0
其中 A 0 , A 1 , A 2 , . . . A_0,A_1,A_2,... A0,A1,A2,...为对称方阵。

例子


LMI ( y ) = [ y 1 + y 2 y 2 + 1 y 1 + 1 y 3 ] , \text{LMI}(y)=\left[

y1+y2y2+1y1+1y3
\right], LMI(y)=[y1+y2y1+1y2+1y3],
则对应
A 0 = [ 0 1 1 0 ] , A 1 = [ 1 0 1 0 ] , A 2 = [ 1 1 0 0 ] , A 3 = [ 0 0 0 1 . ] A_0=\left[
0110
\right], A_1=\left[
1010
\right],A_2=\left[
1100
\right],A_3=\left[
0001
.\right]
A0=[0110],A1=[1100],A2=[1010],A3=[0001.]

随着解决线性矩阵不等式的内点法的提出、以及 MATLAB 软件中 LMI 工具箱的推出,线性矩阵不等式这一工具越来越受到人们的注意和重视。

Lyapunov稳定性

假设可以找到一个正定的Lyapunov函数 V V V(即 V > 0 V>0 V>0)且 V ˙ < 0 \dot{V}<0 V˙<0,则可以证明系统是稳定的。以线性系统为例:
x ˙ = A x + B u . \dot{x}=Ax+Bu. x˙=Ax+Bu.
假设反馈控制
u = − K x . u=-Kx. u=Kx.
取Lyapunov函数为
V ( x ) = x T P x , V(x)=x^{T}Px, V(x)=xTPx,
其中 P P P正定且对称,即 P ≻ 0 , P = P T P\succ0,P=P^{T} P0,P=PT。Lyapunov的导数为
V ˙ ( x ) = x T P x ˙ + x ˙ T P x = x T P ( A − B K ) x + x T ( A − B K ) T P x = − x T Q x ,

V˙(x)=xTPx˙+x˙TPx=xTP(ABK)x+xT(ABK)TPx=xTQx,
V˙(x)===xTPx˙+x˙TPxxTP(ABK)x+xT(ABK)TPxxTQx,
其中
Q = − ( A T P + P A − P B K − K T B T P ) . Q=-(A^TP+PA-PBK-K^TB^TP). Q=(ATP+PAPBKKTBTP).
若能证明 Q ≻ 0 Q \succ 0 Q0,则该系统渐近稳定。

最优控制中常取
K = − 1 2 R − 1 B T P T , K=-\frac{1}{2}R^{-1}B^TP^T, K=21R1BTPT,
其中,前提矩阵 R R R满足 R = R T ≻ 0 R=R^T \succ 0 R=RT0 R − 1 R^{-1} R1存在且有界,于是,
Q = − ( A T P + P A − P B R − 1 B T P T ) . (1) Q=-(A^TP+PA-PBR^{-1}B^TP^T). \tag{1} Q=(ATP+PAPBR1BTPT).(1)

Schur Complement

Schur Complement可用于对一个块矩阵进行等价转换。

定义

假设一个 n × n n \times n n×n的矩阵 M M M可以写成一个块矩阵形式:
M = [ A B C D ] . M=\left[

ABCD
\right]. M=[ACBD].

  1. D D D是可逆的,则 D D D M M M中的舒尔补存在且为
    A − B D − 1 C ; A-BD^{-1}C; ABD1C;

  2. A A A是可逆的,则 A A A M M M中的舒尔补存在且为
    D − C A − 1 B . D-CA^{-1}B. DCA1B.
    “来历”:对方程
    [ A B C D ] [ x y ] = [ p q ] , \left[

    ABCD
    \right] \left[
    xy
    \right]=\left[
    pq
    \right], [ACBD][xy]=[pq],
    使用高斯消元法,由 D D D可逆有
    ( A − B D − 1 C ) x = p − B D − 1 q . (A-BD^{-1}C)x=p-BD^{-1}q. (ABD1C)x=pBD1q.
    A A A可逆有
    ( D − C A − 1 B ) y = q − C A − 1 p . (D-CA^{-1}B)y=q-CA^{-1}p. (DCA1B)y=qCA1p.
    未知数前面的系数即为舒尔补。

Schur Complement作用/性质

  1. M M M分别变为上三角或者下三角矩阵:若 D D D可逆,则
    M = [ A B C D ] = [ I B D − 1 0 I ] [ A − B D − 1 C 0 0 D ] [ I 0 D − 1 C I ] ; M=\left[

    ABCD
    \right]=\left[
    IBD10I
    \right]\left[
    ABD1C00D
    \right]\left[
    I0D1CI
    \right]; M=[ACBD]=[I0BD1I][ABD1C00D][ID1C0I];
    A A A可逆,则
    M = [ A B C D ] = [ I 0 C A − 1 I ] [ A 0 0 D − C A − 1 B ] [ I A − 1 B 0 I ] . M=\left[
    ABCD
    \right]=\left[
    I0CA1I
    \right]\left[
    A00DCA1B
    \right]\left[
    IA1B0I
    \right].
    M=[ACBD]=[ICA10I][A00DCA1B][I0A1BI].

    利用该性质可以快速求解矩阵 M M M的逆。

  2. 特殊性质:若 M M M是对称的,即
    M = [ A B B T C ] , M=\left[

    ABBTC
    \right], M=[ABTBC],
    C C C可逆,则有下列性质:

  3. M ≻ 0 M \succ 0 M0,则有且仅有 C ≻ 0 C \succ 0 C0 A − B C − 1 B T ≻ 0 A-BC^{-1}B^T \succ 0 ABC1BT0

  4. C ≻ 0 C \succ 0 C0,则 M ≻ 0 M \succ 0 M0有且仅有 A − B C − 1 B T ≻ 0 A-BC^{-1}B ^T\succ 0 ABC1BT0

利用Schur Complement将LMI和Lyapunov联系起来

利用舒尔补的特殊性质,式 ( 1 ) (1) (1)大于0等效为
[ − A T P − P A P B B T P T R ] ≻ 0. \left[

ATPPAPBBTPTR
\right] \succ 0. [ATPPABTPTPBR]0.
Lyapunov稳定性的判定条件转化为线性形式,从而方便用软件包数值求解。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/404470
推荐阅读
相关标签
  

闽ICP备14008679号