赞
踩
主要记录源码中解决文本生成中词组重复出现的问题,代码中有具体操作解析。
- class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
- r"""
- :class:`transformers.LogitsProcessor` enforcing an exponential penalty on repeated sequences.
- Args:
- repetition_penalty (:obj:`float`):
- The parameter for repetition penalty. 1.0 means no penalty. See `this paper
- <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
- """
-
- def __init__(self, penalty: float):
- if not isinstance(penalty, float) or not (penalty > 0):
- raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
-
- self.penalty = penalty
-
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
- #scores为cur-step的词表分布[batch,seq,vocab_size],input_ids为输入decoder的文本序列[batch,seq],则score则是获取当前已经生成文本序列的token概率
- score = torch.gather(scores, 1, input_ids)
-
- # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
- #减少已经出现的token的概率
- score = torch.where(score < 0, score * self.penalty, score / self.penalty)
-
- #将减少后的概率重分配到原始的cur-step词表分布中
- scores.scatter_(1, input_ids, score)
- return scores
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。