赞
踩
创新、模型效果
通用的模块 注意力机制
应用领域:cv nlp 信号处理
视觉、文本、语音、信号
核心: 提特征的方法 提的更好
应用NLP的文本任务
权重控制
语言:感兴趣的
图像:指定需要关注
(1)self-attention
作用:同样的词,语境不同,含义不同
基于权重项,重构特征
重构:计算与其他词之间的关系,对每个向量做重构
输入向量——重构——输出重构完的向量
attention帮助提取特征,包括局部特征
self-attention与attention的区别:
(2)Transformer细节
Input Embedding Queries Keys Values
以NLP中为例:
x1、x2为embeding得到的结果
由x1与x1、x2之间的关系
x1 询问——Queries q1
问自己——回答k1——q1k1算内积
x2 别人问我,给的答案 key2——q1k2
每个词都会问其他词与自己之间的关系
x2问x1——q2k1
内积越大,关系越紧密,值越大;垂直 内积为0
初始化权重参数矩阵,分别进行迭代优化,最终输出最好的值
q、k、v是由训练得到——通过权重获得
数值越大,特征越重要
dk向量维度——排除掉维度对结果的影响
softmax归一化 0~1
(3)multi-header 多头注意力机制
每个词与其他词的关系由模型来定
同一个词,不同模型,关系结果不同
特征拼接
很多个特征,所有特征拼接在一起
再通过全连接层——降维
x1 q11 k11 q21 k21
x2 q12 k12 q22 k22
问题:先算后算q1k2,都无所谓
解决:需要加上序号
位置信息表达:对每个词加上单独的表达,位置编码
NLp最火论文: Attention is all your need
视觉中的Attention:只关注主体
multi-head self attention 多头自注意力机制--类似于Group Convolution
文本——分词——每个词——上下文间关系
图像——分块embedding(固定大小分块)——确定区域——按顺序排列组合
第一块 与 第一块 到 N块的关系,最后叠加
Transformer——特征提取器
第一次卷积,卷积核区域很小,非常小特征
第二次,在前面的小块基础上
获取的特征区域逐渐变大,慢慢变全局
深度——感受野非常大
CNN——感受野
CNN问题:要获得全局视野需要很多层
Transformer与CNN相比的优势:
Transformer动图:
ViT/16流程
Embedding层:要求输入token(向量)序列,二维矩阵[num_token, token_dim]
通过一个卷积层来实现,以ViTB/16为例
网络参数
Model | Patch Size | Layers | Hidden Size D | MLP size | Heads | Params |
ViT-Base | 16×16 | 12 | 768 | 3072 | 12 | 86M |
Vit-Large | 16×16 | 24 | 1024 | 4096 | 16 | 307M |
ViT-Huge | 14×14 | 32 | 1280 | 5120 | 16 | 632M |
- """
- original code from rwightman:
- https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
- """
- from functools import partial
- from collections import OrderedDict
-
- import torch
- import torch.nn as nn
-
- # 使用时,需要下载.pth预训练模型,先学习
- # 因为需要在非常大的训练集中训练,才会有很好的效果
-
- def drop_path(x, drop_prob: float = 0., training: bool = False):
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
- changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
- 'survival rate' as the argument.
- """
- if drop_prob == 0. or not training:
- return x
- keep_prob = 1 - drop_prob
- shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
- random_tensor.floor_() # binarize
- output = x.div(keep_prob) * random_tensor
- return output
-
-
- class DropPath(nn.Module):
- """
- Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- """
-
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
-
- def forward(self, x):
- return drop_path(x, self.drop_prob, self.training)
-
-
- # Patch Embedding
- class PatchEmbed(nn.Module):
- """
- 2D Image to Patch Embedding
- """
-
- def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
- super().__init__()
- img_size = (img_size, img_size)
- patch_size = (patch_size, patch_size)
- self.img_size = img_size
- self.patch_size = patch_size
- self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) # (14, 14)
- self.num_patches = self.grid_size[0] * self.grid_size[1] # 14×14=196
-
- self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
- # nn.Identity() 建立一个输入层,什么都不做
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
-
- def forward(self, x):
- B, C, H, W = x.shape
- assert H == self.img_size[0] and W == self.img_size[1], \
- f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
-
- # flatten: [B, C, H, W] -> [B, C, HW]
- # transpose: [B, C, HW] -> [B, HW, C]
- x = self.proj(x).flatten(2).transpose(1, 2)
- x = self.norm(x)
- return x
-
-
- class Attention(nn.Module):
- def __init__(self,
- dim, # 输入token的dim
- num_heads=8,
- qkv_bias=False,
- qk_scale=None,
- attn_drop_ratio=0.,
- proj_drop_ratio=0.):
- super(Attention, self).__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop_ratio)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop_ratio)
-
- def forward(self, x):
- # [batch_size, num_patches + 1, total_embed_dim]
- B, N, C = x.shape
-
- # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
- # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
- # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
- # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
- attn = (q @ k.transpose(-2, -1)) * self.scale
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
-
- # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
- # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
-
- class Mlp(nn.Module):
- """
- MLP as used in Vision Transformer, MLP-Mixer and related networks
- """
-
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
-
-
- class Block(nn.Module):
- def __init__(self,
- dim,
- num_heads,
- mlp_ratio=4.,
- qkv_bias=False,
- qk_scale=None,
- drop_ratio=0.,
- attn_drop_ratio=0.,
- drop_path_ratio=0.,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm):
- super(Block, self).__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
- attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
-
- def forward(self, x):
- x = x + self.drop_path(self.attn(self.norm1(x)))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
-
-
- class VisionTransformer(nn.Module):
- def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
- embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
- qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
- attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
- act_layer=None):
- """
- Args:
- img_size (int, tuple): input image size
- patch_size (int, tuple): patch size
- in_c (int): number of input channels
- num_classes (int): number of classes for classification head
- embed_dim (int): embedding dimension
- depth (int): depth of transformer Encoder Block的个数 L=12
- num_heads (int): number of attention heads
- mlp_ratio (int): ratio of mlp hidden dim to embedding dim
- qkv_bias (bool): enable bias for qkv if True
- qk_scale (float): override default qk scale of head_dim ** -0.5 if set
- representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set pre-logits全连接层的节点个数
- distilled (bool): model includes a distillation token and head as in DeiT models
- drop_ratio (float): dropout rate
- attn_drop_ratio (float): attention dropout rate
- drop_path_ratio (float): stochastic depth rate
- embed_layer (nn.Module): patch embedding layer
- norm_layer: (nn.Module): normalization layer
- """
- super(VisionTransformer, self).__init__()
- self.num_classes = num_classes
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
- self.num_tokens = 2 if distilled else 1
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
- act_layer = act_layer or nn.GELU
-
- self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
- num_patches = self.patch_embed.num_patches
- # 1-batch 1 768
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
- # num_patches 14×14 num_tokens 1
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
- self.pos_drop = nn.Dropout(p=drop_ratio)
-
- # 构建等差序列(递增序列) 0~drop_path_ratio depth个元素
- dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
- # transformer encoder中encoder block
- self.blocks = nn.Sequential(*[
- Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
- norm_layer=norm_layer, act_layer=act_layer)
- for i in range(depth)
- ])
- self.norm = norm_layer(embed_dim)
-
- # Representation layer
- if representation_size and not distilled:
- self.has_logits = True
- self.num_features = representation_size
- self.pre_logits = nn.Sequential(OrderedDict([
- ("fc", nn.Linear(embed_dim, representation_size)),
- ("act", nn.Tanh())
- ]))
- else:
- self.has_logits = False
- self.pre_logits = nn.Identity()
-
- # Classifier head(s)
- self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
- self.head_dist = None
- if distilled:
- self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
-
- # Weight init 权重初始化
- nn.init.trunc_normal_(self.pos_embed, std=0.02)
- if self.dist_token is not None:
- nn.init.trunc_normal_(self.dist_token, std=0.02)
-
- nn.init.trunc_normal_(self.cls_token, std=0.02)
- self.apply(_init_vit_weights)
-
- def forward_features(self, x):
- # [B, C, H, W] -> [B, num_patches, embed_dim]
- # patch embedding
- x = self.patch_embed(x) # [B, 196, 768]
- # [1, 1, 768] -> [B, 1, 768] 复制batch_size份
-
- # Class token 1×768 与 196×768拼接 --> 197×768
- cls_token = self.cls_token.expand(x.shape[0], -1, -1)
- if self.dist_token is None:
- x = torch.cat((cls_token, x), dim=1) # [B, 197, 768] 在196维度concat,拼接后为197
- else:
- x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
-
- # Position Embedding 197×768
- x = self.pos_drop(x + self.pos_embed)
-
- # Transformer Encoder Encoder Block L(×12)
- x = self.blocks(x)
-
- # Layer Norm 197×768
- x = self.norm(x)
- if self.dist_token is None:
- return self.pre_logits(x[:, 0]) # 取第一个维度batch所有数据,取第二个维度索引为0的数据
- else:
- return x[:, 0], x[:, 1]
-
- def forward(self, x):
- x = self.forward_features(x)
- if self.head_dist is not None:
- x, x_dist = self.head(x[0]), self.head_dist(x[1])
- if self.training and not torch.jit.is_scripting():
- # during inference, return the average of both classifier predictions
- return x, x_dist
- else:
- return (x + x_dist) / 2
- else:
- # 对应最后Linear 全连接层
- x = self.head(x)
- return x
-
-
- def _init_vit_weights(m):
- """
- ViT weight initialization
- :param m: module
- """
- if isinstance(m, nn.Linear):
- nn.init.trunc_normal_(m.weight, std=.01)
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.LayerNorm):
- nn.init.zeros_(m.bias)
- nn.init.ones_(m.weight)
-
-
- def vit_base_patch16_224(num_classes: int = 1000):
- """
- ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
- """
- model = VisionTransformer(img_size=224,
- patch_size=16,
- embed_dim=768,
- depth=12,
- num_heads=12,
- representation_size=None,
- num_classes=num_classes)
- return model
-
-
- # num_classes 对应ImageNet-21K的类别个数为21843
- def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
- """
- ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
- """
- model = VisionTransformer(img_size=224,
- patch_size=16,
- embed_dim=768, # 对应Hidden size
- depth=12, # Layers
- num_heads=12,
- representation_size=768 if has_logits else None,
- num_classes=num_classes)
- return model
-
-
- def vit_base_patch32_224(num_classes: int = 1000):
- """
- ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- 链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
- """
- model = VisionTransformer(img_size=224,
- patch_size=32,
- embed_dim=768,
- depth=12,
- num_heads=12,
- representation_size=None,
- num_classes=num_classes)
- return model
-
-
- def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
- """
- ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
- """
- model = VisionTransformer(img_size=224,
- patch_size=32,
- embed_dim=768,
- depth=12,
- num_heads=12,
- representation_size=768 if has_logits else None,
- num_classes=num_classes)
- return model
-
-
- def vit_large_patch16_224(num_classes: int = 1000):
- """
- ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- 链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
- """
- model = VisionTransformer(img_size=224,
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- representation_size=None,
- num_classes=num_classes)
- return model
-
-
- def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
- """
- ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
- """
- model = VisionTransformer(img_size=224,
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- representation_size=1024 if has_logits else None,
- num_classes=num_classes)
- return model
-
-
- def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
- """
- ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- weights ported from official Google JAX impl:
- https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
- """
- model = VisionTransformer(img_size=224,
- patch_size=32,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- representation_size=1024 if has_logits else None,
- num_classes=num_classes)
- return model
-
-
- def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
- """
- ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
- NOTE: converted weights not currently available, too large for github release hosting.
- """
- model = VisionTransformer(img_size=224,
- patch_size=14,
- embed_dim=1280,
- depth=32,
- num_heads=16,
- representation_size=1280 if has_logits else None,
- num_classes=num_classes)
- return model
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。