赞
踩
非局部均值降噪算法(Non-Local Means)是空间降噪算法的一种,和中值滤波、高斯滤波这些局部滤波算法不同的是,非局部均值降噪算法是一种全局的算法,思路是利用整幅图像中相似像素的灰度值来代替当前像素的灰度值 u ^ i ( p ) = 1 C ( p ) ∑ q ∈ B ( p , r ) u i ( q ) w ( p , q ) \hat{u}_{i}(p)=\frac{1}{C(p)} \sum_{q \in B(p, r)} u_{i}(q) w(p, q) u^i(p)=C(p)1q∈B(p,r)∑ui(q)w(p,q)其中, u i ( q ) u_{i}(q) ui(q)是噪声图像像素 q q q的灰度值; u ^ i ( p ) \hat{u}_{i}(p) u^i(p)是降噪后图像像素 p p p的灰度值; w ( p , q ) w(p, q) w(p,q)是像素 p p p和 q q q之间的权重; B ( p , r ) B(p, r) B(p,r)为噪声图像中,以像素 p p p为中心,宽为 2 r + 1 2r+1 2r+1的区域, C ( p ) C(p) C(p)为权重归一化系数,计算公式为: C ( p ) = ∑ q ∈ B ( p , r ) w ( p , q ) C(p)=\sum_{q \in B(p, r)} w(p, q) C(p)=q∈B(p,r)∑w(p,q)
公式很好理解,中间比较重要的就是权重如何设计,权重需要描述两个像素之间的相似度,而这个相似度通常是通过这两个像素邻域像素间的欧拉距离来描述: d 2 ( B ( p , f ) , B ( q , f ) ) = 1 3 ( 2 f + 1 ) 2 ∑ i = 1 3 ∑ j ∈ B ( 0 , Ω ) ( u i ( p + j ) − u i ( q + j ) ) 2 d^{2}(B(p, f), B(q, f))=\frac{1}{3(2 f+1)^{2}} \sum_{i=1}^{3} \sum_{j \in B(0, \Omega)}\left(u_{i}(p+j)-u_{i}(q+j)\right)^{2} d2(B(p,f),B(q,f))=3(2f+1)21i=1∑3j∈B(0,Ω)∑(ui(p+j)−ui(q+j))2其中, 3 3 3次求和是对于彩色图而言的, B ( p , f ) B(p, f) B(p,f)为噪声图像中,以像素 p p p为中心,宽为 2 f + 1 2f+1 2f+1的区域,在这个基础上,添加指数核函数来计算权值: w ( p , q ) = e − max ( d 2 − 2 σ 2 , 0 , 0 ) h 2 w(p, q)=e^{-\frac{\max \left(d^{2}-2 \sigma^{2}, 0,0\right)}{h^{2}}} w(p,q)=e−h2max(d2−2σ2,0,0)其中, σ \sigma σ和 h h h是我们人为设定的参数,以上就完成了非局部均值降噪算法的理论介绍。
这里我基于OpenCV完成了两份代码,其中第一份是我根据上面公式自己实现,比较容易理解,但是运行速度较慢。因为太慢了,所以我尝试写了第二份代码。第二份是参考他人的代码基于Mat指针实现的,因为是指针操作,所以运行速度会相对较快。
第一份代码
Mat Denoise::NonLocalMeansFilter(const Mat &src, int searchWindowSize, int templateWindowSize, double sigma, double h) { Mat dst, pad; dst = Mat::zeros(src.rows, src.cols, CV_8UC1); //构建边界 int padSize = (searchWindowSize+templateWindowSize)/2; copyMakeBorder(src, pad, padSize, padSize, padSize, padSize, cv::BORDER_CONSTANT); int tN = templateWindowSize*templateWindowSize; int sN = searchWindowSize*searchWindowSize; vector<double> gaussian(256*256, 0); for(int i = 0; i<256*256; i++) { double g = exp(-max(i-2.0*sigma*sigma, 0.0))/(h*h); gaussian[i] = g; if(g<0.001) break; } //遍历图像上每一个像素 for(int i = 0; i<src.rows; i++) { for(int j = 0; j<src.cols; j++) { cout<<i<<" "<<j<<endl; //遍历搜索区域每一个像素 int pX = i+searchWindowSize/2; int pY = j+searchWindowSize/2; vector<vector<double>> weight(searchWindowSize, vector<double>(searchWindowSize, 0)); double weightSum = 0; for(int m = searchWindowSize-1; m>=0; m--) { for(int n = searchWindowSize-1; n>=0; n--) { int qX = i+m; int qY = j+n; int w = 0; for(int x = templateWindowSize-1; x>=0; x--) { for(int y = templateWindowSize-1; y>=0; y--) { w += pow(pad.at<uchar>(pX+x, pY+y) - pad.at<uchar>(qX+x, qY+y), 2); } } weight[m][n] = gaussian[(int)(w/tN)]; weightSum += weight[m][n]; } } dst.at<uchar>(i,j) = 0; double sum = 0; for(int m = 0; m<searchWindowSize; m++) { for(int n = 0; n<searchWindowSize; n++) { sum += pad.at<uchar>(i+templateWindowSize/2+m, j+templateWindowSize/2+n)*weight[m][n]; } } dst.at<uchar>(i,j) = (uchar)(sum/weightSum); } } return dst; }
第二份代码
Mat Denoise::NonLocalMeansFilter2(const Mat &src, int searchWindowSize, int templateWindowSize, double sigma, double h) { Mat dst, pad; dst = Mat::zeros(src.rows, src.cols, CV_8UC1); //构建边界 int padSize = (searchWindowSize+templateWindowSize)/2; copyMakeBorder(src, pad, padSize, padSize, padSize, padSize, cv::BORDER_CONSTANT); int tN = templateWindowSize*templateWindowSize; int sN = searchWindowSize*searchWindowSize; int tR = templateWindowSize/2; int sR = searchWindowSize/2; vector<double> gaussian(256*256, 0); for(int i = 0; i<256*256; i++) { double g = exp(-max(i-2.0*sigma*sigma, 0.0))/(h*h); gaussian[i] = g; if(g<0.001) break; } double* pGaussian = &gaussian[0]; const int searchWindowStep = (int)pad.step - searchWindowSize; const int templateWindowStep = (int)pad.step - templateWindowSize; for(int i = 0; i < src.rows; i++) { uchar* pDst = dst.ptr(i); for(int j = 0; j < src.cols; j++) { cout<<i<<" "<<j<<endl; int *pVariance = new int[sN]; double *pWeight = new double[sN]; int cnt = sN-1; double weightSum = 0; uchar* pCenter = pad.data + pad.step * (sR + i) + (sR + j);//搜索区域中心指针 uchar* pUpLeft = pad.data + pad.step * i + j;//搜索区域左上角指针 for(int m = searchWindowSize; m>0; m--) { uchar* pDownLeft = pUpLeft + pad.step * m; for(int n = searchWindowSize; n>0; n--) { uchar* pC = pCenter; uchar* pD = pDownLeft + n; int w = 0; for(int k = templateWindowSize; k>0; k--) { for(int l = templateWindowSize; l>0; l--) { w += (*pC - *pD)*(*pC - *pD); pC++; pD++; } pC += templateWindowStep; pD += templateWindowStep; } w = (int)(w/tN); pVariance[cnt--] = w; weightSum += pGaussian[w]; } } for(int m = 0; m<sN; m++) { pWeight[m] = pGaussian[pVariance[m]]/weightSum; } double tmp = 0.0; uchar* pOrigin = pad.data + pad.step * (tR + i) + (tR + j); for(int m = searchWindowSize, cnt = 0; m>0; m--) { for(int n = searchWindowSize; n>0; n--) { tmp += *(pOrigin++) * pWeight[cnt++]; } pOrigin += searchWindowStep; } *(pDst++) = (uchar)tmp; delete pWeight; delete pVariance; } } return dst; }
下面是输出结果
首先是原图:
添加高斯噪声后:
通过非局部均值降噪算法降噪效果:
可以看出这个效果还是非常感人的
此外,这里我写一个各种算法的总结目录图像降噪算法——图像降噪算法总结,对图像降噪算法感兴趣的同学欢迎参考
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。