赞
踩
数组是存放在连续内存空间上的相同类型数据的集合。
数组可以方便的通过下标索引的方式获取到下标下对应的数据。
注意:
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
你可以假设 nums 中的所有元素是不重复的。
n 将在 [1, 10000]之间。
nums 的每个元素都将在 [-9999, 9999]之间。
自己乱写:
class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size()-1; int t = (left + right)/2; while(nums[t]!=target) { if(left == right) return -1; if(nums[t] < target) left = t+1; if(nums[t] > target) right = t; t = (left + right)/2; } return t; } };
有序数组,(数组中无重复元素)
确定区间定义
1、左闭右闭
// 版本一 class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right] while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <= int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2 if (nums[middle] > target) { right = middle - 1; // target 在左区间,所以[left, middle - 1] } else if (nums[middle] < target) { left = middle + 1; // target 在右区间,所以[middle + 1, right] } else { // nums[middle] == target return middle; // 数组中找到目标值,直接返回下标 } } // 未找到目标值 return -1; } };
2、左闭右开
// 版本二 class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right) while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 < int middle = left + ((right - left) >> 1); if (nums[middle] > target) { right = middle; // target 在左区间,在[left, middle)中 } else if (nums[middle] < target) { left = middle + 1; // target 在右区间,在[middle + 1, right)中 } else { // nums[middle] == target return middle; // 数组中找到目标值,直接返回下标 } } // 未找到目标值 return -1; } };
时间复杂度:O(log n)
空间复杂度:O(1)
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
class Solution { public: int searchInsert(vector<int>& nums, int target) { int n = nums.size(); int left = 0; int right = n - 1; // 定义target在左闭右闭的区间里,[left, right] while (left <= right) { // 当left==right,区间[left, right]依然有效 int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2 if (nums[middle] > target) { right = middle - 1; // target 在左区间,所以[left, middle - 1] } else if (nums[middle] < target) { left = middle + 1; // target 在右区间,所以[middle + 1, right] } else { // nums[middle] == target return middle; } } // 分别处理如下四种情况 // 目标值在数组所有元素之前 [0, -1] // 目标值等于数组中某一个元素 return middle; // 目标值插入数组中的位置 [left, right],return right + 1 // 目标值在数组所有元素之后的情况 [left, right], 因为是右闭区间,所以 return right + 1 return right + 1; } };
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { int leftBorder = getLeftBorder(nums, target); int rightBorder = getRightBorder(nums, target); // 情况一 if (leftBorder == -2 || rightBorder == -2) return {-1, -1}; // 情况三 if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1}; // 情况二 return {-1, -1}; } private: int getRightBorder(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况 while (left <= right) { int middle = left + ((right - left) / 2); if (nums[middle] > target) { right = middle - 1; } else { // 寻找右边界,nums[middle] == target的时候更新left left = middle + 1; rightBorder = left; } } return rightBorder; } int getLeftBorder(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况 while (left <= right) { int middle = left + ((right - left) / 2); if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新right right = middle - 1; leftBorder = right; } else { left = middle + 1; } } return leftBorder; } };
也可以合并到一个函数:
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { vector<int> re(2,-1); int left1 = 0, left2 = 0; int right1 = nums.size()-1, right2 = nums.size()-1; int middle1, middle2; int leftboard = -1, rightboard = -1; //找左边界 while(left1 <= right1) { middle1 = left1 + ((right1 - left1)>>1); if(nums[middle1] < target) left1 = middle1 + 1; else if(nums[middle1] > target) right1 = middle1 - 1; else { right1 = middle1 - 1; leftboard = middle1; } } //找右边界 while(left2 <= right2) { middle2 = left2 + ((right2 - left2)>>1); if(nums[middle2] < target) left2 = middle2 + 1; else if(nums[middle2] > target) right2 = middle2 - 1; else { left2 = middle2 + 1; rightboard = middle2; } } return {leftboard, rightboard}; } };
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
class Solution { public: int mySqrt(int x) { int l = 0, r = x, ans = -1; while (l <= r) { int mid = l + (r - l) / 2; if ((long long)mid * mid <= x) { ans = mid; l = mid + 1; } else { r = mid - 1; } } return ans; } };
给你一个正整数 num 。如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。
不能使用任何内置的库函数,如 sqrt 。
class Solution { public: bool isPerfectSquare(int num) { int left = 0, right = num; while(left <= right) { int mid = left + ((right - left)/2); if((long long)mid * mid < num) left = mid + 1; else if((long long)mid * mid > num) right = mid -1; else return true; } return false; } };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。