当前位置:   article > 正文

python毕业设计 大数据电商用户行为分析及可视化_基于电商平台数据的用户购买行为分析与可视化

基于电商平台数据的用户购买行为分析与可视化


1. 数据集说明

这是一份来自淘宝的用户行为数据,时间区间为 2017-11-25 到 2017-12-03,总计 100,150,807 条记录,大小为 3.5 G,包含 5 个字段。

选题指导,项目分享:

https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md

2. 数据处理

2.1 数据导入

将数据加载到 hive, 然后通过 hive 对数据进行数据处理。

-- 建表
drop table if exists user_behavior;
create table user_behavior (
`user_id` string comment '用户ID',
`item_id` string comment '商品ID',
`category_id` string comment '商品类目ID',
`behavior_type` string  comment '行为类型,枚举类型,包括(pv, buy, cart, fav)',
`timestamp` int comment '行为时间戳',
`datetime` string comment '行为时间')
row format delimited
fields terminated by ','
lines terminated by '\n';

-- 加载数据
LOAD DATA LOCAL INPATH '/home/getway/UserBehavior.csv'
OVERWRITE INTO TABLE user_behavior ;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

2.2 数据清洗

数据处理主要包括:删除重复值,时间戳格式化,删除异常值。

--数据清洗,去掉完全重复的数据
insert overwrite table user_behavior
select user_id, item_id, category_id, behavior_type, timestamp, datetime
from user_behavior
group by user_id, item_id, category_id, behavior_type, timestamp, datetime;

--数据清洗,时间戳格式化成 datetime
insert overwrite table user_behavior
select user_id, item_id, category_id, behavior_type, timestamp, from_unixtime(timestamp, 'yyyy-MM-dd HH:mm:ss')
from user_behavior;

--查看时间是否有异常值
select date(datetime) as day from user_behavior group by date(datetime) order by day;

--数据清洗,去掉时间异常的数据
insert overwrite table user_behavior
select user_id, item_id, category_id, behavior_type, timestamp, datetime
from user_behavior
where cast(datetime as date) between '2017-11-25' and '2017-12-03';

--查看 behavior_type 是否有异常值
select behavior_type from user_behavior group by behavior_type;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

3.数据分析可视化

3.1 用户流量及购物情况

--总访问量PV,总用户量UV
select sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,
       count(distinct user_id) as uv
from user_behavior;
  • 1
  • 2
  • 3
  • 4

image-20201228145436838

--日均访问量,日均用户量
select cast(datetime as date) as day,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,
       count(distinct user_id) as uv
from user_behavior
group by cast(datetime as date)
order by day;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

image-20201228151058279

image-20201228151535393

--每个用户的购物情况,加工到 user_behavior_count
create table user_behavior_count as
select user_id,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,   --点击数
       sum(case when behavior_type = 'fav' then 1 else 0 end) as fav,  --收藏数
       sum(case when behavior_type = 'cart' then 1 else 0 end) as cart,  --加购物车数
       sum(case when behavior_type = 'buy' then 1 else 0 end) as buy  --购买数
from user_behavior
group by user_id;

--复购率:产生两次或两次以上购买的用户占购买用户的比例
select sum(case when buy > 1 then 1 else 0 end) / sum(case when buy > 0 then 1 else 0 end)
from user_behavior_count;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

image-20201228152004432

  • 小结:2017-11-25 到 2017-12-03 这段时间,PV 总数为 89,660,671 ,UV 总数为 987,991。从日均访问量趋势来看,进入 12 月份之后有一个比较明显的增长,猜测可能是因为临近双 12 ,电商活动引流产生,另外,2017-12-02 和 2017-12-03 刚好是周末,也可能是周末的用户活跃度本来就比平常高。总体的复购率为 66.01%,说明用户的忠诚度比较高。

3.2 用户行为转换率

--点击/(加购物车+收藏)/购买 , 各环节转化率
select a.pv,
       a.fav,
       a.cart,
       a.fav + a.cart as `fav+cart`,
       a.buy,
       round((a.fav + a.cart) / a.pv, 4) as pv2favcart,
       round(a.buy / (a.fav + a.cart), 4) as favcart2buy,
       round(a.buy / a.pv, 4) as pv2buy
from(
select sum(pv) as pv,   --点击数
       sum(fav) as fav,  --收藏数
       sum(cart) as cart,  --加购物车数
       sum(buy) as buy  --购买数
from user_behavior_count
) as a;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

image-20201228144958757

image-20201228144814773

  • 小结:2017-11-25 到 2017-12-03 这段时间,点击数为 89,660,671 ,收藏数为 2,888,258,加购物车数为5,530,446,购买数为 2,015,807。总体的转化率为 2.25%,这个值可能是比较低的,从加到购物车数来看,有可能部分用户是准备等到电商节日活动才进行购买。所以合理推断:一般电商节前一段时间的转化率会比平常低。

3.3 用户行为习惯

-- 一天的活跃时段分布
select hour(datetime) as hour,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,   --点击数
       sum(case when behavior_type = 'fav' then 1 else 0 end) as fav,  --收藏数
       sum(case when behavior_type = 'cart' then 1 else 0 end) as cart,  --加购物车数
       sum(case when behavior_type = 'buy' then 1 else 0 end) as buy  --购买数
from user_behavior
group by hour(datetime)
order by hour;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

image-20201228153206947

--一周用户的活跃分布
select pmod(datediff(datetime, '1920-01-01') - 3, 7) as weekday,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,   --点击数
       sum(case when behavior_type = 'fav' then 1 else 0 end) as fav,  --收藏数
       sum(case when behavior_type = 'cart' then 1 else 0 end) as cart,  --加购物车数
       sum(case when behavior_type = 'buy' then 1 else 0 end) as buy  --购买数
from user_behavior
where date(datetime) between '2017-11-27' and '2017-12-03'
group by pmod(datediff(datetime, '1920-01-01') - 3, 7)
order by weekday;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

image-20201228153751943

image-20201228154533968

  • 小结:晚上21点-22点之间是用户一天中最活跃的时候,凌晨 4 点,则是活跃度最低的时候。一周中,工作日活跃度都差不多,到了周末活跃度有明显提高。

3.4 基于 RFM 模型找出有价值的用户

RFM 模型是衡量客户价值和客户创利能力的重要工具和手段,其中由3个要素构成了数据分析最好的指标,分别是:

  • R-Recency(最近一次购买时间)
  • F-Frequency(消费频率)
  • M-Money(消费金额)
--R-Recency(最近一次购买时间), R值越高,一般说明用户比较活跃
select user_id,
       datediff('2017-12-04', max(datetime)) as R,
       dense_rank() over(order by datediff('2017-12-04', max(datetime))) as R_rank
from user_behavior
where behavior_type = 'buy'
group by user_id
limit 10;

--F-Frequency(消费频率), F值越高,说明用户越忠诚
select user_id,
       count(1) as F,
       dense_rank() over(order by count(1) desc) as F_rank
from user_behavior
where behavior_type = 'buy'
group by user_id
limit 10;

--M-Money(消费金额),数据集无金额,所以就不分析这一项 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

对有购买行为的用户按照排名进行分组,共划分为5组,
前 - 1/5 的用户打5分
前 1/5 - 2/5 的用户打4分
前 2/5 - 3/5 的用户打3分
前 3/5 - 4/5 的用户打2分
前 4/5 - 的用户打1分
按照这个规则分别对用户时间间隔排名打分和购买频率排名打分,最后把两个分数合并在一起作为该名用户的最终评分

with cte as(
select user_id,
       datediff('2017-12-04', max(datetime)) as R,
       dense_rank() over(order by datediff('2017-12-04', max(datetime))) as R_rank,
       count(1) as F,
       dense_rank() over(order by count(1) desc) as F_rank
from user_behavior
where behavior_type = 'buy'
group by user_id)

select user_id, R, R_rank, R_score, F, F_rank, F_score,  R_score + F_score AS score
from(
select *,
       case ntile(5) over(order by R_rank) when 1 then 5
                                           when 2 then 4
                                           when 3 then 3
                                           when 4 then 2
                                           when 5 then 1
       end as R_score,
       case ntile(5) over(order by F_rank) when 1 then 5
                                           when 2 then 4
                                           when 3 then 3
                                           when 4 then 2
                                           when 5 then 1
       end as F_score
from cte
) as a
order by score desc
limit 20;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

image-20201228155700646

  • 小结:可以根据用户的价值得分,进行个性化的营销推荐。

3.5 商品维度的分析

--销量最高的商品
select item_id ,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,   --点击数
       sum(case when behavior_type = 'fav' then 1 else 0 end) as fav,  --收藏数
       sum(case when behavior_type = 'cart' then 1 else 0 end) as cart,  --加购物车数
       sum(case when behavior_type = 'buy' then 1 else 0 end) as buy  --购买数
from user_behavior
group by item_id
order by buy desc
limit 10;

--销量最高的商品大类
select category_id ,
       sum(case when behavior_type = 'pv' then 1 else 0 end) as pv,   --点击数
       sum(case when behavior_type = 'fav' then 1 else 0 end) as fav,  --收藏数
       sum(case when behavior_type = 'cart' then 1 else 0 end) as cart,  --加购物车数
       sum(case when behavior_type = 'buy' then 1 else 0 end) as buy  --购买数
from user_behavior
group by category_id
order by buy desc
limit 10;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 小结:缺失商品维表,所以没有太多分析价值。假如有商品维表,可以再展开,以商品纬度进行分析,比如不同行业、不同产品的转化率,还有竞品分析等等。

选题指导,项目分享:

https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/579759
推荐阅读
相关标签
  

闽ICP备14008679号