赞
踩
实际的图片:
(1)可以看到ResNet50预测的前三个结果中第一个结果为:whippet(小灵狗)
(2)ResNet50预测的前三个结果中第一个结果为:Walker_hound(步行猎犬)
(3)从结果上来看,比之前的VGG16和VGG19预测的效果都要好(这里虽然不知道图片中的够具体是什么狗,但是结果都预测成了“狗”的类别)
关于InceptionV3(159层),Xception(126层),Inception_ResNet_V2(572层):
https://mydreamambitious.blog.csdn.net/article/details/123907490
关于VGG16和VGG19:
https://mydreamambitious.blog.csdn.net/article/details/123906643
关于MobileNet(88层)和MobileNetV2(88层):
https://mydreamambitious.blog.csdn.net/article/details/123907955
关于DenseNet121(121层),DenseNet169(169层),DenseNet201(201层):
https://mydreamambitious.blog.csdn.net/article/details/123908742
EfficientNetBX
https://mydreamambitious.blog.csdn.net/article/details/123929264
import os import keras import numpy as np from PIL import Image from keras.preprocessing import image from keras.preprocessing.image import img_to_array from keras.applications.resnet import preprocess_input,decode_predictions def load_ResNet50(): #加载ResNet50并且保留顶层(也就是全连接层) model_ResNet50=keras.applications.resnet.ResNet50(weights='imagenet') #图形路径 curr_path=os.getcwd() img_path=curr_path+'\\images\\train\\dog\\1.jpg' #将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224 img=image.load_img(img_path,target_size=(224,224)) #首先需要转换为向量的形式 img_out=image.img_to_array(img) #扩充维度 img_out=np.expand_dims(img_out,axis=0) #对输入的图像进行处理 img_out=preprocess_input(img_out) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) #上面这段话的意思是输出包括(类别,图像描述,输出概率) preds=model_ResNet50.predict(img_out) #输出前三个结果的可能性 print('Predicted: ',decode_predictions(preds,top=3)[0]) print('Predicted: ',decode_predictions(preds,top=3)) def load_ResNet101(): # 加载ResNet50并且保留顶层(也就是全连接层) model_ResNet50 = keras.applications.resnet.ResNet101(weights='imagenet') # 图形路径 img_path = 'images/train/dog/1.jpg' # 将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224 img = image.load_img(img_path, target_size=(224, 224)) # 首先需要转换为向量的形式 img_out = image.img_to_array(img) # 扩充维度 img_out = np.expand_dims(img_out, axis=0) # 对输入的图像进行处理 img_out = preprocess_input(img_out) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) # 上面这段话的意思是输出包括(类别,图像描述,输出概率) preds = model_ResNet50.predict(img_out) # 输出前三个结果的可能性 print('Predicted: ', decode_predictions(preds, top=3)[0]) print('Predicted: ', decode_predictions(preds, top=3)) if __name__ == '__main__': print('Pycharm') print('load_ResNet50:\n') load_ResNet50() print('load_ResNet101:\n') load_ResNet101()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。