赞
踩
安装pycocotools github地址:https://github.com/philferriere/cocoapi
-
- pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
若报错,pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
换成
pip install git+git://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
实在不行的话,手动下载
- git clone https://github.com/pdollar/coco.git
- cd coco/PythonAPI
- python setup.py build_ext --inplace #安装到本地
- python setup.py build_ext install # 安装到Python环境中
没有的库自己pip
注意skimage用pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple
提取特定的类别如下:
- # conding='utf-8'
- from pycocotools.coco import COCO
- import os
- import shutil
- from tqdm import tqdm
- import skimage.io as io
- import matplotlib.pyplot as plt
- import cv2
- from PIL import Image, ImageDraw
-
- #the path you want to save your results for coco to voc
- savepath="/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/" #save_path
- img_dir=savepath+'images/'
- anno_dir=savepath+'Annotations/'
- # datasets_list=['train2014', 'val2014']
- datasets_list=['train2017', 'val2017']
-
- classes_names = ['sheep'] #coco
- #Store annotations and train2014/val2014/... in this folder
- dataDir= '/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/coco/' #origin coco
-
- headstr = """\
- <annotation>
- <folder>VOC</folder>
- <filename>%s</filename>
- <source>
- <database>My Database</database>
- <annotation>COCO</annotation>
- <image>flickr</image>
- <flickrid>NULL</flickrid>
- </source>
- <owner>
- <flickrid>NULL</flickrid>
- <name>company</name>
- </owner>
- <size>
- <width>%d</width>
- <height>%d</height>
- <depth>%d</depth>
- </size>
- <segmented>0</segmented>
- """
- objstr = """\
- <object>
- <name>%s</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>%d</xmin>
- <ymin>%d</ymin>
- <xmax>%d</xmax>
- <ymax>%d</ymax>
- </bndbox>
- </object>
- """
-
- tailstr = '''\
- </annotation>
- '''
-
- #if the dir is not exists,make it,else delete it
- def mkr(path):
- if os.path.exists(path):
- shutil.rmtree(path)
- os.mkdir(path)
- else:
- os.mkdir(path)
- mkr(img_dir)
- mkr(anno_dir)
- def id2name(coco):
- classes=dict()
- for cls in coco.dataset['categories']:
- classes[cls['id']]=cls['name']
- return classes
-
- def write_xml(anno_path,head, objs, tail):
- f = open(anno_path, "w")
- f.write(head)
- for obj in objs:
- f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
- f.write(tail)
-
-
- def save_annotations_and_imgs(coco,dataset,filename,objs):
- #eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
- anno_path=anno_dir+filename[:-3]+'xml'
- img_path=dataDir+dataset+'/'+filename
- print(img_path)
- dst_imgpath=img_dir+filename
-
- img=cv2.imread(img_path)
- #if (img.shape[2] == 1):
- # print(filename + " not a RGB image")
- # return
- shutil.copy(img_path, dst_imgpath)
-
- head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
- tail = tailstr
- write_xml(anno_path,head, objs, tail)
-
-
- def showimg(coco,dataset,img,classes,cls_id,show=True):
- global dataDir
- I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))
- annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
- # print(annIds)
- anns = coco.loadAnns(annIds)
- # print(anns)
- # coco.showAnns(anns)
- objs = []
- for ann in anns:
- class_name=classes[ann['category_id']]
- if class_name in classes_names:
- print(class_name)
- if 'bbox' in ann:
- bbox=ann['bbox']
- xmin = int(bbox[0])
- ymin = int(bbox[1])
- xmax = int(bbox[2] + bbox[0])
- ymax = int(bbox[3] + bbox[1])
- obj = [class_name, xmin, ymin, xmax, ymax]
- objs.append(obj)
- draw = ImageDraw.Draw(I)
- draw.rectangle([xmin, ymin, xmax, ymax])
- if show:
- plt.figure()
- plt.axis('off')
- plt.imshow(I)
- plt.show()
-
- return objs
-
- for dataset in datasets_list:
- #./COCO/annotations/instances_train2014.json
- annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)
-
- #COCO API for initializing annotated data
- coco = COCO(annFile)
-
- #show all classes in coco
- classes = id2name(coco)
- print(classes)
- #[1, 2, 3, 4, 6, 8]
- classes_ids = coco.getCatIds(catNms=classes_names)
- print(classes_ids)
- for cls in classes_names:
- #Get ID number of this class
- cls_id=coco.getCatIds(catNms=[cls])
- img_ids=coco.getImgIds(catIds=cls_id)
- print(cls,len(img_ids))
- # imgIds=img_ids[0:10]
- for imgId in tqdm(img_ids):
- img = coco.loadImgs(imgId)[0]
- filename = img['file_name']
- # print(filename)
- objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
- print(objs)
- save_annotations_and_imgs(coco, dataset, filename, objs)
-
然后就可以了
- #conding='utf-8'
- import os
- import random
- from shutil import copy2
-
- # origin
- image_original_path = "/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/images"
- label_original_path = "/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/Annotations"
-
- # parent_path = os.path.dirname(os.getcwd())
- # parent_path = "D:\\AI_Find"
- # train_image_path = os.path.join(parent_path, "image_data/seed/train/images/")
- # train_label_path = os.path.join(parent_path, "image_data/seed/train/labels/")
- train_image_path = os.path.join("/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/train2017")
- train_label_path = os.path.join("/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/annotations/train2017")
- test_image_path = os.path.join("/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/val2017")
- test_label_path = os.path.join("/opt/10T/home/asc005/YangMingxiang/DenseCLIP_/data/COCO/annotations/val2017")
-
-
- # test_image_path = os.path.join(parent_path, 'image_data/seed/val/images/')
- # test_label_path = os.path.join(parent_path, 'image_data/seed/val/labels/')
-
-
- def mkdir():
- if not os.path.exists(train_image_path):
- os.makedirs(train_image_path)
- if not os.path.exists(train_label_path):
- os.makedirs(train_label_path)
-
- if not os.path.exists(test_image_path):
- os.makedirs(test_image_path)
- if not os.path.exists(test_label_path):
- os.makedirs(test_label_path)
-
-
- def main():
- mkdir()
- all_image = os.listdir(image_original_path)
- for i in range(len(all_image)):
- num = random.randint(1,5)
- if num != 2:
- copy2(os.path.join(image_original_path, all_image[i]), train_image_path)
- train_index.append(i)
- else:
- copy2(os.path.join(image_original_path, all_image[i]), test_image_path)
- val_index.append(i)
-
- all_label = os.listdir(label_original_path)
- for i in train_index:
- copy2(os.path.join(label_original_path, all_label[i]), train_label_path)
- for i in val_index:
- copy2(os.path.join(label_original_path, all_label[i]), test_label_path)
-
-
- if __name__ == '__main__':
- train_index = []
- val_index = []
- main()
- # -*- coding: utf-8 -*-
- # @Time : 2019/8/27 10:48
- # @Author :Rock
- # @File : voc2coco.py
- # just for object detection
- import xml.etree.ElementTree as ET
- import os
- import json
-
- coco = dict()
- coco['images'] = []
- coco['type'] = 'instances'
- coco['annotations'] = []
- coco['categories'] = []
-
- category_set = dict()
- image_set = set()
-
- category_item_id = 0
- image_id = 0
- annotation_id = 0
-
-
- def addCatItem(name):
- global category_item_id
- category_item = dict()
- category_item['supercategory'] = 'none'
- category_item_id += 1
- category_item['id'] = category_item_id
- category_item['name'] = name
- coco['categories'].append(category_item)
- category_set[name] = category_item_id
- return category_item_id
-
-
- def addImgItem(file_name, size):
- global image_id
- if file_name is None:
- raise Exception('Could not find filename tag in xml file.')
- if size['width'] is None:
- raise Exception('Could not find width tag in xml file.')
- if size['height'] is None:
- raise Exception('Could not find height tag in xml file.')
- img_id = "%04d" % image_id
- image_id += 1
- image_item = dict()
- image_item['id'] = int(img_id)
- # image_item['id'] = image_id
- image_item['file_name'] = file_name
- image_item['width'] = size['width']
- image_item['height'] = size['height']
- coco['images'].append(image_item)
- image_set.add(file_name)
- return image_id
-
-
- def addAnnoItem(object_name, image_id, category_id, bbox):
- global annotation_id
- annotation_item = dict()
- annotation_item['segmentation'] = []
- seg = []
- # bbox[] is x,y,w,h
- # left_top
- seg.append(bbox[0])
- seg.append(bbox[1])
- # left_bottom
- seg.append(bbox[0])
- seg.append(bbox[1] + bbox[3])
- # right_bottom
- seg.append(bbox[0] + bbox[2])
- seg.append(bbox[1] + bbox[3])
- # right_top
- seg.append(bbox[0] + bbox[2])
- seg.append(bbox[1])
-
- annotation_item['segmentation'].append(seg)
-
- annotation_item['area'] = bbox[2] * bbox[3]
- annotation_item['iscrowd'] = 0
- annotation_item['ignore'] = 0
- annotation_item['image_id'] = image_id
- annotation_item['bbox'] = bbox
- annotation_item['category_id'] = category_id
- annotation_id += 1
- annotation_item['id'] = annotation_id
- coco['annotations'].append(annotation_item)
-
-
- def parseXmlFiles(xml_path):
- for f in os.listdir(xml_path):
- if not f.endswith('.xml'):
- continue
-
- bndbox = dict()
- size = dict()
- current_image_id = None
- current_category_id = None
- file_name = None
- size['width'] = None
- size['height'] = None
- size['depth'] = None
-
- xml_file = os.path.join(xml_path, f)
- # print(xml_file)
-
- tree = ET.parse(xml_file)
- root = tree.getroot()
- if root.tag != 'annotation':
- raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
-
- # elem is <folder>, <filename>, <size>, <object>
- for elem in root:
- current_parent = elem.tag
- current_sub = None
- object_name = None
-
- if elem.tag == 'folder':
- continue
-
- if elem.tag == 'filename':
- file_name = elem.text
- if file_name in category_set:
- raise Exception('file_name duplicated')
-
- # add img item only after parse <size> tag
- elif current_image_id is None and file_name is not None and size['width'] is not None:
- if file_name not in image_set:
- current_image_id = addImgItem(file_name, size)
- # print('add image with {} and {}'.format(file_name, size))
- else:
- raise Exception('duplicated image: {}'.format(file_name))
- # subelem is <width>, <height>, <depth>, <name>, <bndbox>
- for subelem in elem:
- bndbox['xmin'] = None
- bndbox['xmax'] = None
- bndbox['ymin'] = None
- bndbox['ymax'] = None
-
- current_sub = subelem.tag
- if current_parent == 'object' and subelem.tag == 'name':
- object_name = subelem.text
- if object_name not in category_set:
- current_category_id = addCatItem(object_name)
- else:
- current_category_id = category_set[object_name]
-
- elif current_parent == 'size':
- if size[subelem.tag] is not None:
- raise Exception('xml structure broken at size tag.')
- size[subelem.tag] = int(subelem.text)
-
- # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
- for option in subelem:
- if current_sub == 'bndbox':
- if bndbox[option.tag] is not None:
- raise Exception('xml structure corrupted at bndbox tag.')
- bndbox[option.tag] = int(option.text)
-
- # only after parse the <object> tag
- if bndbox['xmin'] is not None:
- if object_name is None:
- raise Exception('xml structure broken at bndbox tag')
- if current_image_id is None:
- raise Exception('xml structure broken at bndbox tag')
- if current_category_id is None:
- raise Exception('xml structure broken at bndbox tag')
- bbox = []
- # x
- bbox.append(bndbox['xmin'])
- # y
- bbox.append(bndbox['ymin'])
- # w
- bbox.append(bndbox['xmax'] - bndbox['xmin'])
- # h
- bbox.append(bndbox['ymax'] - bndbox['ymin'])
- # print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
- # bbox))
- addAnnoItem(object_name, current_image_id, current_category_id, bbox)
-
-
- if __name__ == '__main__':
- #修改这里的两个地址,一个是xml文件的父目录;一个是生成的json文件的绝对路径
- xml_path = r'G:\dataset\COCO\person\coco_val2014\annotations\\'
- json_file = r'G:\dataset\COCO\person\coco_val2014\instances_val2014.json'
- parseXmlFiles(xml_path)
- json.dump(coco, open(json_file, 'w'))
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。