赞
踩
标注工具 LabelMe 生成的标注文件为JSON格式,而YOLOv8中支持的为TXT文件格式。以下Python代码实现3个功能:
1.将JSON格式转换成TXT格式;
2.将数据集进行随机拆分,生成YOLOv8支持的目录结构;
3.生成YOLOv8支持的YAML文件。
代码test_labelme2yolov8.py如下:
- import os
- import json
- import argparse
- import colorama
- import random
- import shutil
-
- def parse_args():
- parser = argparse.ArgumentParser(description="json(LabelMe) to txt(YOLOv8)")
-
- parser.add_argument("--dir", required=True, type=str, help="images, json files, and generated txt files, all in the same directory")
- parser.add_argument("--labels", required=True, type=str, help="txt file that hold indexes and labels, one label per line, for example: face 0")
- parser.add_argument("--val_size", default=0.2, type=float, help="the proportion of the validation set to the overall dataset:[0., 0.5]")
- parser.add_argument("--name", required=True, type=str, help="the name of the dataset")
-
- args = parser.parse_args()
- return args
-
- def get_labels_index(name):
- labels = {} # key,value
- with open(name, "r") as file:
- for line in file:
- # print("line:", line)
-
- key_value = []
- for v in line.split(" "):
- # print("v:", v)
- key_value.append(v.replace("\n", "")) # remove line breaks(\n) at the end of the line
- if len(key_value) != 2:
- print(colorama.Fore.RED + "Error: each line should have only two values(key value):", len(key_value))
- continue
-
- labels[key_value[0]] = key_value[1]
-
- with open(name, "r") as file:
- line_num = len(file.readlines())
-
- if line_num != len(labels):
- print(colorama.Fore.RED + "Error: there may be duplicate lables:", line_num, len(labels))
-
- return labels
-
- def get_json_files(dir):
- jsons = []
- for x in os.listdir(dir):
- if x.endswith(".json"):
- jsons.append(x)
-
- return jsons
-
- def parse_json(name):
- with open(name, "r") as file:
- data = json.load(file)
-
- width = data["imageWidth"]
- height = data["imageHeight"]
- # print(f"width: {width}; height: {height}")
-
- objects=[]
- for shape in data["shapes"]:
- if shape["shape_type"] != "rectangle":
- print(colorama.Fore.YELLOW + "Warning: only the rectangle type is supported:", shape["shape_type"])
- continue
-
- object = []
- object.append(shape["label"])
- object.append(shape["points"])
- objects.append(object)
-
- return width, height, objects
-
- def get_box_width_height(box):
- dist = lambda val: max(val) - min(val)
-
- x = [pt[0] for pt in box]
- y = [pt[1] for pt in box]
-
- return min(x), min(y), dist(x), dist(y)
-
- def bounding_box_normalization(width, height, objects, labels):
- boxes = []
- for object in objects:
- box = [] # class x_center y_center width height
- box.append(labels[object[0]])
-
- # print("point:", object[1])
- x_min, y_min, box_w, box_h = get_box_width_height(object[1])
- box.append(round((float(x_min + box_w / 2.0) / width), 6))
- box.append(round((float(y_min + box_h / 2.0) / height), 6))
- box.append(round(float(box_w / width), 6))
- box.append(round(float(box_h / height), 6))
-
- boxes.append(box)
-
- return boxes
-
- def write_to_txt(dir, json, width, height, objects, labels):
- boxes = bounding_box_normalization(width, height, objects, labels)
- # print("boxes:", boxes)
-
- name = json[:-len(".json")] + ".txt"
- # print("name:", name)
- with open(dir + "/" + name, "w") as file:
- for item in boxes:
- # print("item:", item)
- if len(item) != 5:
- print(colorama.Fore.RED + "Error: the length must be 5:", len(item))
- continue
- string = item[0] + " " + str(item[1]) + " " + str(item[2]) + " " + str(item[3]) + " " + str(item[4]) + "\r"
- file.write(string)
-
- def json_to_txt(dir, jsons, labels):
- for json in jsons:
- name = dir + "/" + json
- # print("name:", name)
-
- width, height, objects = parse_json(name)
- # print(f"width: {width}; height: {height}; objects: {objects}")
-
- write_to_txt(dir, json, width, height, objects, labels)
-
-
- def is_in_range(value, a, b):
- return a <= value <= b
-
- def get_random_sequence(length, val_size):
- numbers = list(range(0, length))
- val_sequence = random.sample(numbers, int(length*val_size))
- # print("val_sequence:", val_sequence)
-
- train_sequence = [x for x in numbers if x not in val_sequence]
- # print("train_sequence:", train_sequence)
-
- return train_sequence, val_sequence
-
- def get_files_number(dir):
- count = 0
- for file in os.listdir(dir):
- if os.path.isfile(os.path.join(dir, file)):
- count += 1
-
- return count
-
- def split_train_val(dir, jsons, name, val_size):
- if is_in_range(val_size, 0., 0.5) is False:
- print(colorama.Fore.RED + "Error: the interval for val_size should be:[0., 0.5]:", val_size)
- raise
-
- dst_dir_images_train = "datasets/" + name + "/images/train"
- dst_dir_images_val = "datasets/" + name + "/images/val"
- dst_dir_labels_train = "datasets/" + name + "/labels/train"
- dst_dir_labels_val = "datasets/" + name + "/labels/val"
-
- try:
- os.makedirs(dst_dir_images_train) #, exist_ok=True
- os.makedirs(dst_dir_images_val)
- os.makedirs(dst_dir_labels_train)
- os.makedirs(dst_dir_labels_val)
- except OSError as e:
- print(colorama.Fore.RED + "Error: cannot create directory:", e.strerror)
- raise
-
- # supported image formats
- img_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")
-
- # print("jsons:", jsons)
- train_sequence, val_sequence = get_random_sequence(len(jsons), val_size)
-
- for index in train_sequence:
- for format in img_formats:
- file = dir + "/" + jsons[index][:-len(".json")] + format
- # print("file:", file)
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_images_train)
- break
-
- file = dir + "/" + jsons[index][:-len(".json")] + ".txt"
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_labels_train)
-
- for index in val_sequence:
- for format in img_formats:
- file = dir + "/" + jsons[index][:-len(".json")] + format
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_images_val)
- break
-
- file = dir + "/" + jsons[index][:-len(".json")] + ".txt"
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_labels_val)
-
- num_images_train = get_files_number(dst_dir_images_train)
- num_images_val = get_files_number(dst_dir_images_val)
- num_labels_train = get_files_number(dst_dir_labels_train)
- num_labels_val = get_files_number(dst_dir_labels_val)
-
- if num_images_train + num_images_val != len(jsons) or num_labels_train + num_labels_val != len(jsons):
- print(colorama.Fore.RED + "Error: the number of files is inconsistent:", num_images_train, num_images_val, num_labels_train, num_labels_val, len(jsons))
- raise
-
-
- def generate_yaml_file(labels, name):
- path = os.path.join("datasets", name, name+".yaml")
- # print("path:", path)
- with open(path, "w") as file:
- file.write("path: ../datasets/%s # dataset root dir\n" % name)
- file.write("train: images/train # train images (relative to 'path')\n")
- file.write("val: images/val # val images (relative to 'path')\n")
- file.write("test: # test images (optional)\n\n")
-
- file.write("# Classes\n")
- file.write("names:\n")
- for key, value in labels.items():
- # print(f"key: {key}; value: {value}")
- file.write(" %d: %s\n" % (int(value), key))
-
-
- if __name__ == "__main__":
- colorama.init()
- args = parse_args()
-
- # 1. parse JSON file and write it to a TXT file
- labels = get_labels_index(args.labels)
- # print("labels:", labels)
- jsons = get_json_files(args.dir)
- # print("jsons:", jsons)
- json_to_txt(args.dir, jsons, labels)
-
- # 2. split the dataset
- split_train_val(args.dir, jsons, args.name, args.val_size)
-
- # 3. generate a YAML file
- generate_yaml_file(labels, args.name)
-
- print(colorama.Fore.GREEN + "====== execution completed ======")
代码有些多,主要函数说明如下:
1.函数parse_args:解析输入参数;
2.函数get_labels_index:解析labels文件,数据集中的所有类别及对应的索引,格式labels.txt如下所示:生成YOLOv8的YAML文件时也需要此文件
- face 0
- hand 1
- eye 2
- mouth 3
- horse 4
- tree 5
- bridge 6
- house 7
3.函数get_json_files:获取指定目录下的所有json文件;
4.函数parse_json:解析json文件,将txt文件中需要的数据提取出来;
5.函数bounding_box_normalization:将bounding box值归一化到(0,1)区间;
6.函数write_to_txt:将最终结果写入txt文件;
7.函数split_train_val:将数据集随机拆分为训练集和验证集,并按YOLOv8支持的目录结构存放,根目录为datasets,接着是指定的数据集名,例如为fake,与YOLOv8中数据集coco8目录结构完全一致
8.函数generate_yaml_file:生成YOLOv8支持的yaml文件,存放在datasets/数据集名下,例如为fake.yaml
接收4个参数:参数dir为存放数据集的目录;参数labels指定labels文件;参数val_size指定验证集所占的比例;参数name指定新生成的YOLOv8数据集的名字
这里从网上随机下载了10幅图像,使用LabelMe进行了标注,执行结果如下图所示:
生成的fake.yaml文件如下图所示:
- path: ../datasets/fake # dataset root dir
- train: images/train # train images (relative to 'path')
- val: images/val # val images (relative to 'path')
- test: # test images (optional)
-
- # Classes
- names:
- 0: face
- 1: hand
- 2: eye
- 3: mouth
- 4: horse
- 5: tree
- 6: bridge
- 7: house
将生成的fake数据集进行训练,测试代码test_yolov8_detect.py如下:
- import argparse
- import colorama
- from ultralytics import YOLO
-
- def parse_args():
- parser = argparse.ArgumentParser(description="YOLOv8 object detect")
- parser.add_argument("--yaml", required=True, type=str, help="yaml file")
- parser.add_argument("--epochs", required=True, type=int, help="number of training")
-
- args = parser.parse_args()
- return args
-
- def train(yaml, epochs):
- model = YOLO("yolov8n.pt") # load a pretrained model
- results = model.train(data=yaml, epochs=epochs, imgsz=640) # train the model
-
- metrics = model.val() # It'll automatically evaluate the data you trained, no arguments needed, dataset and settings remembered
-
- model.export(format="onnx", dynamic=True) # export the model
-
- if __name__ == "__main__":
- colorama.init()
- args = parse_args()
-
- train(args.yaml, args.epochs)
-
- print(colorama.Fore.GREEN + "====== execution completed ======")
执行结果如下图所示:目前此测试代码接收2个参数:参数yaml指定yaml文件;参数epochs指定训练次数;由以下结果可知,生成的新数据集无需做任何改动即可进行训练
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。