赞
踩
python 代码
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]), knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), score_threshold: float = Body( SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=2 ), history: List[History] = Body( [], description="历史对话", examples=[[ {"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}, {"role": "assistant", "content": "虎头虎脑"}]] ), stream: bool = Body(False, description="流式输出"), model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), max_tokens: Optional[int] = Body( None, description="限制LLM生成Token数量,默认None代表模型最大值" ), prompt_name: str = Body( "default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)" ), request: Request = None, ): kb = KBServiceFactory.get_service_by_name(knowledge_base_name) if kb is None: return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") history = [History.from_data(h) for h in history] async def knowledge_base_chat_iterator( query: str, top_k: int, history: Optional[List[History]], model_name: str = LLM_MODELS[0], prompt_name: str = prompt_name, ) -> AsyncIterable[str]: nonlocal max_tokens callback = AsyncIteratorCallbackHandler() if isinstance(max_tokens, int) and max_tokens <= 0: max_tokens = None model = get_ChatOpenAI( model_name=model_name, temperature=temperature, max_tokens=max_tokens, callbacks=[callback], ) docs = search_docs(query, knowledge_base_name, top_k, score_threshold) context = "\n".join([doc.page_content for doc in docs]) if len(docs) == 0: # 如果没有找到相关文档,使用empty模板 prompt_template = get_prompt_template("knowledge_base_chat", "empty") else: prompt_template = get_prompt_template("knowledge_base_chat", prompt_name) input_msg = History(role="user", content=prompt_template).to_msg_template(False) chat_prompt = ChatPromptTemplate.from_messages( [i.to_msg_template() for i in history] + [input_msg]) chain = LLMChain(prompt=chat_prompt, llm=model) # Begin a task that runs in the background. task = asyncio.create_task(wrap_done( chain.acall({"context": context, "question": query}), callback.done), ) source_documents = [] for doc in docs: text = doc.page_content.rstrip(' [链接]:\n') + '\n' if text not in source_documents: source_documents.append(text) if len(source_documents) == 0: # 没有找到相关文档 source_documents = [] if stream: async for token in callback.aiter(): # Use server-sent-events to stream the response print(f"answer:{token}") yield json.dumps({"answer": token}, ensure_ascii=False) yield json.dumps({"docs": source_documents}, ensure_ascii=False) else: answer = "" async for token in callback.aiter(): answer += token yield json.dumps({"answer": answer, "docs": source_documents}, ensure_ascii=False) await task return StreamingResponse(knowledge_base_chat_iterator(query=query, top_k=top_k, history=history, model_name=model_name, prompt_name=prompt_name), media_type="text/event-stream")
vue.js 代码
<template> <div> <h2>Streamed Responses:</h2> <div v-for="(message, index) in messages" :key="index">{{ message }}</div> </div> </template> <script> import {TRUE} from "sass"; export default { data() { return { messages: [], reader: null, // 用于存储流的阅读器 }; }, mounted() { this.postDataAndStreamResponse(); }, beforeUnmount() { if (this.reader) { this.reader.cancel(); // 组件销毁时取消流阅读 } }, methods: { async postDataAndStreamResponse() { try { const response = await fetch('http://XXXXX/chat/knowledge_base_chat', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Accept': 'text/event-stream', }, body: JSON.stringify({ "query": "怎么打官司", "knowledge_base_name": "samples", "top_k": 5, "score_threshold": 0.5, "history": [{ "role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎" }, { "role": "assistant", "content": "虎头虎脑" }], "stream": true, "model_name": "qwen-api", "temperature": 0.5, "max_tokens": 1000, "prompt_name": "default" }) }); this.reader = response.body.getReader(); this.readStream(); } catch (error) { console.error('Stream fetch error:', error); // 这里可以添加用户友好的错误处理 } }, async readStream() { try { const decoder = new TextDecoder(); while (TRUE) { // 使用循环而非递归 const { value, done } = await this.reader.read(); if (done) break; // 如果没有更多数据,则退出循环 const text = decoder.decode(value, { stream: true }); this.messages.push(text); } } catch (error) { console.error('Stream read error:', error); // 这里可以添加用户友好的错误处理 } }, }, }; </script>
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。