当前位置:   article > 正文

七、计算机视觉-图像的ROI区域

七、计算机视觉-图像的ROI区域


1、什么是ROI

`在计算机视觉中,ROI代表感兴趣区域(Region of Interest),它是指图像或视频中被指定为需要特别关注或处理的区域。ROI可以帮助减少计算量,并且在处理大型图像或视频时可以提高处理效率。

2、ROI如何实现的

在这里插入图片描述

假设我们要检测上图中的人物是谁。通常情况下,我们不需要对整张图片进行分析,因为人脸只出现在图片的某个区域。这时,我们可以将该区域指定为ROI,从而只对该区域进行人脸检测和识别,而不必浪费计算资源在图片的其他部分。

具体步骤如下:

  1. 图像加载:加载待处理的图像。
  2. ROI指定:通过人工指定或使用计算机视觉算法找到包含人脸的区域,并将其指定为ROI。
  3. 人脸检测:在ROI中运行人脸检测算法,识别出图像中的人脸。
  4. 人脸识别:对检测到的人脸进行识别,可能通过比对已知的人脸数据库来完成。
  5. 结果显示:将识别结果显示在图像上,或者根据需要采取进一步的操作。
  6. 通过使用ROI,我们可以在人脸检测和识别过程中减少计算量,提高算法的效率,并且更专注于我们感兴趣的区域,从而提高整体处理速度和准确性。

3、一个案例

还是回到刚才的问题假设我们要检测上图中的人物是谁,如何检测人脸并提取 ROI呢

import cv2

# 加载人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 读取图像
image = cv2.imread('./img/handou.png')

# 将图像转换为灰度图像(人脸检测器需要灰度图像)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 检测人脸
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# 遍历每个检测到的人脸并提取 ROI
for (x, y, w, h) in faces:
    # 在原始图像上绘制矩形框,用于标记检测到的人脸
    cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
    
    # 提取人脸 ROI
    face_roi = image[y:y+h, x:x+w]
    
    # 可以在此处对提取的人脸 ROI 进行进一步处理或保存
    
# 显示结果图像
cv2.imshow('Detected Faces', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

上面代码会标记出人脸部分如下图:
在这里插入图片描述


总结

上面代码演示了 使用Haar 特征分类器或基于深度学习的人脸检测器 去检测人脸部分,Haar的使用后面会单独讲到 这里只需要明白ROI区域的概念就行。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/116129
推荐阅读
相关标签
  

闽ICP备14008679号