赞
踩
目录
串口通讯 (Serial Communication) 是一种设备间极为常用的串行通讯方式,目前多存在于工控机及部分通信设备中。
对于通讯协议,以分层的方式来理解,可以把它分为物理层和协议层。
物理层规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输。
协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。简单来说物理层规定我们用嘴巴还是用肢体来交流,协议层则规定我们用中文还是英文来交流。
串口通讯的物理层有很多标准及变种,串口通讯的物理层的主要标准是RS-232标准,其规定了信号的用途、通讯接口及信号的电平标准,其通讯结构如下:
在上面的通讯方式中,两个通讯设备的“DB9接口”之间通过串口信号线建立起连接,串口信号线中使用“RS-232标准”传输数据信号。由于RS-232电平标准的信号不能直接被控制器直接识别,所以这些信号会经过一个“电平转换芯片”转换成控制器能识别的“TTL 标准”的电平信号,才能实现通讯。
1、信号的电平标准
在设备内部信号是以TTL电平标准传输的,设备之间是通过RS-232电平标准传输的,而且TTL电平需要经过电平转换芯片才能转化为RS-232电平,RS-232电平转TTL电平也是如此。如图是TTL电平标准与RS-232电平标准。
电子电路中常使用 TTL 的电平标准,理想状态下,使用 5V 表示二进制逻辑 1, 使用 0V 表示逻辑 0;
为了增加串口通讯的远距离传输及抗干扰能力,所以RS-232信号线,理想状态下,使用-15V 表示逻辑 1, +15V 表示逻辑 0。
2、RS-232 信号线
在最初的应用中,RS-232 串口标准常用于计算机、路由与调制调解器 (MODEN,俗称“猫”) 之间的通讯,在这种通讯系统中,设备被分为数据终端设备 DTE(计算机、路由) 和数据通讯设备DCE(调制调解器)。在旧式的台式计算机中一般会有 RS-232 标准的 COM 口 (也称 DB9 接口),下图就是电脑主板上的 COM 口及串口线 。
其中接线口以针式引出信号线的称为公头,以孔式引出信号线的称为母头。在计算机中一般引出公头接口,而在调制调解器设备中引出的一般为母头,使用上图中的串口线即可把它与计算机连接起来。通讯时,串口线中传输的信号就是使用前面讲解的 RS-232 标准调制的。
DB9 接口中的公头及母头的各个引脚的标准信号线接法如下图。
上表中的是计算机端的 DB9 公头标准接法,由于两个通讯设备之间的收发信号 (RXD 与 TXD) 应交叉相连,所以调制调解器端的 DB9 母头的收发信号接法一般与公头的相反。
串口线中的 RTS、CTS、DSR、DTR 及 DCD 信号,使用逻辑 1 表示信号有效,逻辑 0 表示信号无效。
例如,当计算机端控制 DTR 信号线表示为逻辑 1 时,它是为了告知远端的调制调解器,本机已准备好接收数据,0 则表示还没准备就绪。
在目前的其它工业控制使用的串口通讯中,一般只使用 RXD、TXD 以及 GND 三条信号线,直接传输数据信号,而 RTS、CTS、DSR、DTR 及 DCD 信号都被裁剪掉了。
1、数据包
串口通讯的数据包由发送设备通过自身的 TXD 接口传输到接收设备的 RXD 接口。
在串口通讯的协议层中,规定了数据包的内容,它由启始位、主体数据、校验位以及停止位组成,通讯双方的数据包格式要约定一致才能正常收发数据。
2、波特率
由于异步通信中没有时钟信号,所以接收双方要约定好波特率,即每秒传输的码元个数,以便对信号进行解码,常见的波特率有4800、9600、115200等。STM32中波特率的设置通过串口初始化结构体来实现。
3、起始和停止信号
数据包的首尾分别是起始位和停止位,数据包的起始信号由一个逻辑0的数据位表示,停止位信号可由0.5、1、1.5、2个逻辑1的数据位表示,双方需约定一致。STM32中起始和停止信号的设置也是通过串口初始化结构体来实现。
4、有效数据
在数据包的起始位之后紧接着的就是要传输的主体数据内容,也称为有效数据,有效数据的长度常被约定为 5、6、7 或 8 位长。
5、数据校验
在有效数据之后,有一个可选的数据校验位。由于数据通信相对更容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。
校验方法有奇校验 (odd)、偶校验 (even)、0 校验 (space)、1 校验 (mark) 以及无校验 (noparity)。
奇校验要求有效数据和校验位中“1”之和的个数为奇数,比如一个 8 位长的有效数据为:01101001, 此时总共有 4 个“1”,为达到奇校验效果,校验位为“1”,最后传输的数据将是 8 位的有效数据加上 1 位的校验位总共 9 位。
偶校验与奇校验要求刚好相反,要求帧数据和校验位中“1”之和的个数为偶数,比如数据帧:11001010, 此时数据帧“1”的个数为 4 个,所以偶校验位为“0”。
0 校验是不管有效数据中的内容是什么,校验位总为“0”。
1 校验是不管有效数据中的内容是什么,校验位总为“1”。
通用同步异步收发器 (Universal Synchronous Asynchronous Receiver and Transmitter) 是一个串行通信设备,可以灵活地与外部设备进行全双工数据交换。
UART(Universal Asynchronous Receiver and Transmitter)跟 USART不一样的是:它是在 USART 基础上裁剪掉了同步通信功能,只有异步通信。简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是UART。
串行通信一般是以帧格式传输数据,即是一帧一帧的传输,每帧包含有起始信号、数据信息、停止信号,可能还有校验信息。USART 就是对这些传输参数有具体规定,当然也不是只有唯一一 个参数值,很多参数值都可以自定义设置,只是增强它的兼容性。
USART 满足外部设备对工业标准 NRZ 异步串行数据格式的要求,并且使用了小数波特率发生器,可以提供多种波特率,使得它的应用更加广泛。
USART不仅支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。 USART 支持使用 DMA,可实现高速数据通信。
STM32在硬件设计时一般都会预留一个 USART 通信接口连接电脑,用于在调试程序是可以把一些调试信息“打印”在电脑端的串口调试助手工具上,从而来用串口调试助手来验证自己的程序是否出了问题。
接口通过三个引脚与其他设备连接在一起USART框图。任何USART双向通信至少需要两个脚:接收数据输入(RX)和发送数据输出(TX)。
RX:接收数据串行输入。通过过采样技术来区别数据和噪音,从而恢复数据。
TX:发送数据输出。当发送器被禁止时,输出引脚恢复到它的I/O端口配置。当发送器被激活,并且不发送数据时,TX引脚处于高电平。在单线和智能卡模式里,此I/O口被同时用于数据的发送和接收。
● 总线在发送或接收前应处于空闲状态
● 一个起始位
● 一个数据字(8或9位),最低有效位在前
● 0.5,1.5,2个的停止位,由此表明数据帧的结束
● 使用分数波特率发生器 —— 12位整数和4位小数的表示方法。
● 一个状态寄存器(USART_SR)
● 数据寄存器(USART_DR)
● 一个波特率寄存器(USART_BRR),12位的整数和4位小数
● 一个智能卡模式下的保护时间寄存器(USART_GTPR)
USART框图
TX:发送数据输出引脚。
RX:接收数据输入引脚。
SW_RX:数据接收引脚,只用于单线和智能卡模式,属于内部引脚,没有具体外部引脚。
nRTS:请求以发送 (Request To Send),n 表示低电平有效。如果使能 RTS 流控制,当 USART 接收器准备好接收新数据时就会将 nRTS 变成低电平;当接收寄存器已满时,nRTS 将被设置为高电平。该引脚只适用于硬件流控制。
nCTS:清除以发送 (Clear To Send),n 表示低电平有效。如果使能 CTS 流控制,发送器在发送下一帧数据之前会检测 nCTS 引脚,如果为低电平,表示可以发送数据,如果为高电平则在发送完当前数据帧之后停止发送。该引脚只适用于硬件流控制。
SCLK:发送器时钟输出引脚。这个引脚仅适用于同步模式。
STM32F103ZET6 系统控制器有三个 USART 和两个 UART,其中 USART1 和时钟来源于 APB2 总线时钟,其最大频率为 72MHz,其他四个的时钟来源于 APB1 总线时钟,其最大频率为 36MHz。 UART 只是异步传输功能,所以没有 SCLK、nCTS 和 nRTS 功能引脚。
USART 数据寄存器 (USART_DR) 只有低 9 位有效,并且第 9 位数据是否有效要取决于 USART 控制寄存器 1(USART_CR1) 的 M 位设置,当 M 位为 0 时表示 8 位数据字长,当 M 位为 1 表示 9 位数据字长,我们一般使用 8 位数据字长。 USART_DR 包含了已发送的数据或者接收到的数据。USART_DR 实际是包含了两个寄存器,一 个是专门用于发送的可写 TDR,另一个是专门用于接收的可读 RDR。当进行发送操作时,往USART_DR 写入数据会自动存储在 TDR 内;当进行读取操作时,向 USART_DR 读取数据会自动提取 RDR 数据。
TDR 和 RDR 都是介于系统总线和移位寄存器之间。串行通信是一个位紧接着一个位传输的。
发送时把 TDR 内容转移到发送移位寄存器,然后把移位寄存器数据每一位发送出去;接收时把接收到的 每一位顺序保存在接收移位寄存器内然后才转移到 RDR。
USART 支持 DMA 传输,可以实现高速数据传输。
USART 有专门控制发送的发送器、控制接收的接收器,还有唤醒单元、中断控制等等。使用 USART 之前需要向 USART_CR1 寄存器的 UE 位置 1 使能 USART,UE 位用来开启供给给串口 的时钟。
发送或者接收数据字长可选 8 位或 9 位,由 USART_CR1 的 M 位控制。
当 USART_CR1 寄存器的发送使能位 TE 置 1 时,启动数据发送,发送移位寄存器的数据会在 TX 引脚输出,低位在前,高位在后。如果是同步模式 SCLK 也输出时钟信号。
一个字符帧发送需要三个部分:起始位 + 数据帧 + 停止位。起始位是一个位周期的低电平,位周期就是每一位占用的时间;数据帧就是我们要发送的 8 位或 9 位数据,数据是从最低位开始传输的;停止位是一定时间周期的高电平。
停止位时间长短是可以通过 USART 控制寄存器 2(USART_CR2) 的 STOP[1:0] 位控制,可选 0.5 个、1 个、1.5 个和 2 个停止位。默认使用 1 个停止位。2 个停止位适用于正常 USART 模式、单线模式和调制解调器模式。0.5 个和 1.5 个停止位用于智能卡模式。 当选择 8 位字长,使用 1 个停止位时,具体发送字符时序图见图字符发送时序图 。
例如:当选择 8 位字长,使用 1 个停止位时,具体发送字符时序图见图字符发送时序图 。
当发送使能位 TE 置 1 之后,发送器开始会先发送一个空闲帧 (一个数据帧长度的高电平),接下来就可以往 USART_DR 寄存器写入要发送的数据。在写入最后一个数据后,需要等待 USART 状态寄存器 (USART_SR) 的 TC 位为 1,表示数据传输完成,如果 USART_CR1 寄存器的 TCIE 位置 1,将产生中断。
在发送数据时,编程的时候有几个比较重要的标志位我们来总结下。
如果将 USART_CR1 寄存器的 RE 位置 1,使能 USART 接收,使得接收器在 RX 线开始搜索起始位。在确定到起始位后就根据 RX 线电平状态把数据存放在接收移位寄存器内。接收完成后就把接收移位寄存器数据移到 RDR 内,并把 USART_SR 寄存器的 RXNE 位置 1,同时如果 USART_CR2 寄存器的 RXNEIE 置 1 的话可以产生中断。
在接收数据时,编程的时候有几个比较重要的标志位我们来总结下。
波特率指数据信号对载波的调制速率,它用单位时间内载波调制状态改变次数来表示,单位为比特。比特率指单位时间内传输的比特数,单位 bit/s(bps)。对于 USART 波特率与比特率相等,所以可以将波特率和比特率作为同一个概念。波特率越大,传输速率越快。 USART 的发送器和接收器需要使用相同的波特率。
计算公式如下:
其中,fPLCK为 USART 时钟,USARTDIV 是一个存放在波特率寄存器 (USART_BRR) 的一个无符号定点数。其中 DIV_Mantissa[11:0] 位定义 USARTDIV 的整数部分,DIV_Fraction[3:0] 位定义USARTDIV 的小数部分。
例如:DIV_Mantissa=24(0x18),DIV_Fraction=10(0x0A),此时 USART_BRR 值为 0x18A;那么 USARTDIV 的小数位 10/16=0.625;整数位 24,最终 USARTDIV 的值为 24.625。
如果知道 USARTDIV 值为 27.68,那么 DIV_Fraction=16*0.68=10.88,最接近的正整数为 11,所以 DIV_Fraction[3:0] 为 0xB;DIV_Mantissa= 整数 (27.68)=27,即为 0x1B。
波特率的常用值有 2400、9600、19200、115200。下面以实例讲解如何设定寄存器值得到波特率的值。
我们知道 USART1 使用 APB2 总线时钟,最高可达 72MHz,其他 USART 的最高频率为 36MHz。
我们选取 USART1 作为实例讲解,即fPLCK=72MHz。为得到 115200bps 的波特率,此时:
解得USARTDIV=39.0625,可算得 DIV_Fraction=0.0625*16=1=0x01,DIV_Mantissa=39=0x27,即应该设置 USART_BRR 的值为 0x271。
STM32F103 系列控制器 USART 支持奇偶校验。当使用校验位时,串口传输的长度将是 8 位的数据帧加上 1 位的校验位总共 9 位,此时 USART_CR1 寄存器的 M 位需要设置为 1,即 9 数据位。
将 USART_CR1 寄存器的 PCE 位置 1 就可以启动奇偶校验控制,奇偶校验由硬件自动完成。启动了奇偶校验控制之后,在发送数据帧时会自动添加校验位,接收数据时自动验证校验位。接收数据时如果出现奇偶校验位验证失败,会见 USART_SR 寄存器的 PE 位置 1,并可以产生奇偶校验中断。
使能了奇偶校验控制后,每个字符帧的格式将变成:起始位 + 数据帧 + 校验位 + 停止位。
标准库函数对每个外设都建立了一个初始化结构体,比如 USART_InitTypeDef,结构体成员用于 设置外设工作参数,并由外设初始化配置函数,比如 USART_Init() 调用,这些设定参数将会设置 外设相应的寄存器,达到配置外设工作环境的目的。
初始化结构体定义在 stm32f10x_usart.h 文件中,初始化库函数定义在 stm32f10x_usart.c 文件中。
typedef struct
{
uint32_t USART_BaudRate; // 波特率
uint16_t USART_WordLength; // 字长
uint16_t USART_StopBits; // 停止位
uint16_t USART_Parity; // 校验位
uint16_t USART_Mode; // USART 模式
uint16_t USART_HardwareFlowControl; // 硬件流控制
} USART_InitTypeDef;
●USART_BaudRate:波特率设置。
一般设置为 2400、9600、19200、115200。标准库函数会根据设定值计算得到 USARTDIV 值,从而设置 USART_BRR 寄存器值。
●USART_WordLength:数据帧字长,可选 8 位或 9 位。
它设定 USART_CR1 寄存器的 M 位的值。如果没有使能奇偶校验控制,一般使用 8 数据位;如果使能了奇偶校验则一般设置为 9 数据位。
#define USART_WordLength_8b ((uint16_t)0x0000)
#define USART_WordLength_9b ((uint16_t)0x1000)
#define IS_USART_WORD_LENGTH(LENGTH) (((LENGTH) == USART_WordLength_8b) || \
((LENGTH) == USART_WordLength_9b))
● USART_StopBits:停止位设置。
停止位可选 0.5 个、1 个、1.5 个和 2 个停止位,它设定 USART_CR2寄存器的 STOP[1:0] 位的值,一般我们选择 1 个停止位。
#define USART_StopBits_1 ((uint16_t)0x0000)
#define USART_StopBits_0_5 ((uint16_t)0x1000)
#define USART_StopBits_2 ((uint16_t)0x2000)
#define USART_StopBits_1_5 ((uint16_t)0x3000)
#define IS_USART_STOPBITS(STOPBITS) (((STOPBITS) == USART_StopBits_1) || \
((STOPBITS) == USART_StopBits_0_5) || \
((STOPBITS) == USART_StopBits_2) || \
((STOPBITS) == USART_StopBits_1_5))
● USART_Parity:奇偶校验控制选择。
奇偶校验位可选 USART_Parity_No(无校验)、USART_Parity_Even(偶校验) 以及 USART_Parity_Odd(奇校验),它设定 USART_CR1 寄存器的 PCE 位和 PS 位的值。
#define USART_Parity_No ((uint16_t)0x0000)
#define USART_Parity_Even ((uint16_t)0x0400)
#define USART_Parity_Odd ((uint16_t)0x0600)
#define IS_USART_PARITY(PARITY) (((PARITY) == USART_Parity_No) || \
((PARITY) == USART_Parity_Even) || \
((PARITY) == USART_Parity_Odd))
● USART_Mode:USART 模式选择。
USART的模式有 USART_Mode_Rx 和 USART_Mode_Tx,允许使用逻辑或运算选择两个,它设定 USART_CR1 寄存器的 RE 位和 TE 位。
#define USART_Mode_Rx ((uint16_t)0x0004)
#define USART_Mode_Tx ((uint16_t)0x0008)
#define IS_USART_MODE(MODE) ((((MODE) & (uint16_t)0xFFF3) == 0x00) && ((MODE) != (uint16_t)0x00))
●USART_HardwareFlowControl:硬件流控制选择。
#define USART_HardwareFlowControl_None ((uint16_t)0x0000)
#define USART_HardwareFlowControl_RTS ((uint16_t)0x0100)
#define USART_HardwareFlowControl_CTS ((uint16_t)0x0200)
#define USART_HardwareFlowControl_RTS_CTS ((uint16_t)0x0300)
#define IS_USART_HARDWARE_FLOW_CONTROL(CONTROL)\
(((CONTROL) == USART_HardwareFlowControl_None) || \
((CONTROL) == USART_HardwareFlowControl_RTS) || \
((CONTROL) == USART_HardwareFlowControl_CTS) || \
((CONTROL) == USART_HardwareFlowControl_RTS_CTS))
typedef struct
{
uint16_t USART_Clock; // 时钟使能控制
uint16_t USART_CPOL; // 时钟极性
uint16_t USART_CPHA; // 时钟相位
uint16_t USART_LastBit; // 最尾位时钟脉冲
} USART_ClockInitTypeDef;
● USART_Clock:同步模式下 SCLK 引脚上时钟输出使能控制。
可选禁止时钟输出 (USART_Clock_Disable) 或开启时钟输出 (USART_Clock_Enable);如果使用同步模式发送,一般都需要开启时钟。它设定 USART_CR2 寄存器的 CLKEN 位的值。
#define USART_Clock_Disable ((uint16_t)0x0000)
#define USART_Clock_Enable ((uint16_t)0x0800)
#define IS_USART_CLOCK(CLOCK) (((CLOCK) == USART_Clock_Disable) || \
((CLOCK) == USART_Clock_Enable))
● USART_CPOL:同步模式下 SCLK 引脚上输出时钟极性设置。
可设置在空闲时 SCLK 引脚为低电平 (USART_CPOL_Low) 或高电平 (USART_CPOL_High)。它设定 USART_CR2 寄存器的 CPOL位的值。
#define USART_CPOL_Low ((uint16_t)0x0000)
#define USART_CPOL_High ((uint16_t)0x0400)
#define IS_USART_CPOL(CPOL) (((CPOL) == USART_CPOL_Low) || ((CPOL) == USART_CPOL_High))
● USART_CPHA:同步模式下 SCLK 引脚上输出时钟相位设置。
可设置在时钟第一个变化沿捕获数据 (USART_CPHA_1Edge) 或在时钟第二个变化沿捕获数据。它设定 USART_CR2 寄存器的CPHA 位的值。USART_CPHA 与 USART_CPOL 配合使用可以获得多种模式时钟关系。
#define USART_CPHA_1Edge ((uint16_t)0x0000)
#define USART_CPHA_2Edge ((uint16_t)0x0200)
#define IS_USART_CPHA(CPHA) (((CPHA) == USART_CPHA_1Edge) || ((CPHA) == USART_CPHA_2Edge))
● USART_LastBit:选择在发送最后一个数据位的时候时钟脉冲是否在 SCLK 引脚输出。
可以是不输出脉冲 (USART_LastBit_Disable)、输出脉冲 (USART_LastBit_Enable)。它设定 USART_CR2 寄存器的 LBCL 位的值。
#define USART_LastBit_Disable ((uint16_t)0x0000)
#define USART_LastBit_Enable ((uint16_t)0x0100)
#define IS_USART_LASTBIT(LASTBIT) (((LASTBIT) == USART_LastBit_Disable) || \
((LASTBIT) == USART_LastBit_Enable))
usart 文件夹内包含了 usart.c 和 usart.h 两个文件。这两个文件用于串口的初始化和中断接收。这里只是针对串口 1,比如你要用串口 2 或者其他的串口,只要对代码稍作修改就可以了。
usart.c里面包含了2个函数一个是void USART1_IRQHandler(void);另外一个是void uart_init(u32 bound);里面还有一段对串口 printf 的支持代码,如果去掉,则会导致 printf 无法使用,虽然软件编译不会报错,但是硬件上 STM32 是无法启动的,这段代码不要去修改。
这段引入 printf 函数支持的代码在 usart.h 头文件的最上方,这段代码加入之后便可以通过 printf 函数向串口发送我们需要的内容,方便开发过程中查看代码执行情况以及一些变量值。这 段代码不需要修改,引入到 usart.h 即可。
这段代码为:
//
//加入以下代码,支持printf函数,而不需要选择use MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};
FILE __stdout;
//定义_sys_exit()以避免使用半主机模式
_sys_exit(int x)
{
x = x;
}
//重定义fputc函数
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (u8) ch;
return ch;
}
#endif
串口设置的一般步骤可以总结为如下几个步骤:
1) 串口时钟使能,GPIO 时钟使能
2) 串口复位
3) GPIO 端口模式设置
4) 串口参数初始化
5) 开启中断并且初始化 NVIC(如果需要开启中断才需要这个步骤)
6) 使能串口
7) 编写中断处理函数
下面,我们就简单介绍下这几个与串口基本配置直接相关的几个固件库函数。
这些函数和定义主要分布在 stm32f10x_usart.h 和 stm32f10x_usart.c 文件中。
1.串口时钟使能。
串口是挂载在 APB2 下面的外设,所以使能函数为:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1);
2.串口复位。
当外设出现异常的时候可以通过复位设置,实现该外设的复位,然后重新配置这个外设达到让其重新工作的目的。一般在系统刚开始配置外设的时候,都会先执行复位该外设的操作。
复位的是在函数 USART_DeInit()中完成:
void USART_DeInit(USART_TypeDef* USARTx);//串口复位
比如我们要复位串口 1,方法为:
USART_DeInit(USART1); //复位串口 1
3.串口参数初始化。
串口初始化是通过 USART_Init()函数实现的:
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);
这个函数的第一个入口参数是指定初始化的串口标号,这里选择 USART1。
第二个入口参数是一个 USART_InitTypeDef 类型的结构体指针,这个结构体指针的成员变量用来设置串口的一些参数。一般的实现格式为:
USART_InitStructure.USART_BaudRate = bound; //波特率设置;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为 8 位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口
从上面的初始化格式可以看出初始化需要设置的参数为:波特率,字长,停止位,奇偶校验位,硬件数据流控制,模式(收,发)。我们可以根据需要设置这些参数。
4.数据发送与接收。
STM32 的发送与接收是通过数据寄存器 USART_DR 来实现的,这是一个双寄存器,包含了 TDR 和 RDR。当向该寄存器写数据的时候,串口就会自动发送,当收到数据的时候,也是存在该寄存器内。
STM32 库函数操作 USART_DR 寄存器发送数据的函数是:
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
通过该函数向串口寄存器 USART_DR 写入一个数据。
STM32 库函数操作 USART_DR 寄存器读取串口接收到的数据的函数是:
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
通过该函数可以读取串口接受到的数据。
5.串口状态。
串口的状态可以通过状态寄存器 USART_SR 读取。USART_SR 的各位描述如下图所示。
RXNE(读数据寄存器非空),当该位被置 1 的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取 USART_DR,通过读 USART_DR 可以将该位清零,也可以向该位写 0,直接清除。
TC(发送完成),当该位被置位的时候,表示 USART_DR 内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:
1)读 USART_SR,写USART_DR。
2)直接向该位写 0。
在我们固件库函数里面,读取串口状态的函数是:
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
这个函数的第二个入口参数非常关键,它是标示我们要查看串口的哪种状态,比如上面讲解的RXNE(读数据寄存器非空)以及 TC(发送完成)。例如:
我们要判断读寄存器是否非空(RXNE),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_RXNE);
我们要判断发送是否完成(TC),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_TC);
这些标识号在 MDK 里面是通过宏定义定义的:
#define USART_IT_PE ((uint16_t)0x0028)
#define USART_IT_TXE ((uint16_t)0x0727)
#define USART_IT_TC ((uint16_t)0x0626)
#define USART_IT_RXNE ((uint16_t)0x0525)
#define USART_IT_IDLE ((uint16_t)0x0424)
#define USART_IT_LBD ((uint16_t)0x0846)
#define USART_IT_CTS ((uint16_t)0x096A)
#define USART_IT_ERR ((uint16_t)0x0060)
#define USART_IT_ORE ((uint16_t)0x0360)
#define USART_IT_NE ((uint16_t)0x0260)
#define USART_IT_FE ((uint16_t)0x0160)
6.串口使能。
串口使能是通过函数 USART_Cmd()来实现的,这个很容易理解,使用方法是:
USART_Cmd(USART1, ENABLE); //使能串口
7.开启串口响应中断。
有些时候当我们还需要开启串口中断,那么我们还需要使能串口中断,使能串口中断的函数是:
void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState)
这个函数的第二个入口参数是标示使能串口的类型,也就是使能哪种中断,因为串口的中断类型有很多种。比如在接收到数据的时候(RXNE 读数据寄存器非空),我们要产生中断,那么我们开启中断的方法是:
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启中断,接收到数据中断
我们在发送数据结束的时候(TC,发送完成)要产生中断,那么方法是:
USART_ITConfig(USART1,USART_IT_TC,ENABLE);
8.获取相应中断状态。
当我们使能了某个中断的时候,当该中断发生了,就会设置状态寄存器中的某个标志位。经常我们在中断处理函数中,要判断该中断是哪种中断,使用的函数是:
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT)
比如我们使能了串口发送完成中断,那么当中断发生了, 我们便可以在中断处理函数中调用这个函数来判断到底是否是串口发送完成中断,方法是:
USART_GetITStatus(USART1, USART_IT_TC)
返回值是 SET,说明是串口发送完成中断发生。
本实验需要用到的硬件资源有:
1) 正点原子STM32f103战舰V3开发板 串口 1
串口 1 之前还没有介绍过,本实验用到的串口 1 与 USB 串口并没有在 PCB 上连接在一起,需要通过跳线帽来连接一下。这里我们把 P6 的 RXD 和 TXD 用跳线帽与 PA9 和 PA10 连接起来。
连接上这里之后,我们在硬件上就设置完成了,可以开始软件设计了。
代码如下:
//初始化 IO 串口 1
//bound:波特率
void uart_init(u32 bound)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
//①串口时钟使能,GPIO 时钟使能,复用时钟使能
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|
RCC_APB2Periph_GPIOA, ENABLE); //使能 USART1,GPIOA 时钟
//②串口复位
USART_DeInit(USART1); //复位串口 1
//③GPIO 端口模式设置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //ISART1_TX PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART1_RX PA.10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.10
//④串口参数初始化
USART_InitStructure.USART_BaudRate = bound; //波特率设置
USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长为 8 位
USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl =
USART_HardwareFlowControl_None; //无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口
#if EN_USART1_RX //如果使能了接收
//⑤初始化 NVIC
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ; //抢占优先级 3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级 3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ 通道使能
NVIC_Init(&NVIC_InitStructure); //中断优先级初始化
//⑤开启中断
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //开启中断
#endif
//⑥使能串口
USART_Cmd(USART1, ENABLE); //使能串口
}
此代码的编写顺序即USART的配置顺序:
我们用标号①~⑥标 示了顺序:
① 串口时钟使能,GPIO 时钟使能
② 串口复位
③ GPIO 端口模式设置
④ 串口参数初始化
⑤ 初始化 NVIC 并且开启中断
⑥ 使能串口
配置全双工的串口 1,那么 TX(PA9) 管脚需要配置为推挽复用输出,RX(PA10)管脚配置为浮空输入或者带上拉输入。
模式配置参考下面表格:
使用了串口的中断接收,必须在 usart.h 里面设置 EN_USART1_RX 为 1(默认设置就是 1 的) 。该函数才会配置中断使能,以及开启串口 1 的 NVIC 中断。这里我们把串口 1 中断放在组 2,优先级设置为组 2 里面的最低。
接下来,根据之前讲解的步骤 7,还要编写中断服务函数。串口 1 的中断服务函数 USART1_IRQHandler。
USART1_IRQHandler 函数
void USART1_IRQHandler(void)函数是串口 1 的中断响应函数,当串口 1 发生了相应的中断后,就会跳到该函数执行。中断相应函数的名字是不能随便定义的,一般我们都遵循 MDK定义的函数名。这些函数名字在启动文件 startup_stm32f10x_hd.s 文件中可以找到。
函数体里面通过函数:
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
判断是否接受中断,如果是串口接受中断,则读取串口接受到的数据:
Res =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据
读到数据后接下来就对数据进行分析。
这里我们设计了一个小小的接收协议:通过这个函数,配合一个数组 USART_RX_BUF[],一个接收状态寄存器 USART_RX_STA(此寄存器其实就是一个全局变量,由作者自行添加。由于它起到类似寄存器的功能,这里暂且称之为寄存器)实现对串口数据的接收管理。
USART_RX_BUF 的大小由 USART_REC_LEN 定义,也就是一次接收的数据最大不能超过USART_REC_LEN 个字节。USART_RX_STA 是一个接收状态寄存器其各的定义如表 5.3.1.1 所示:
当接收到从电脑发过来的数据,把接收到的数据保存在 USART_RX_BUF 中,同时在接收状态寄存器(USART_RX_STA)中计数接收到的有效数据个数,当收到回车(回车的表示由 2个字节组成:0X0D 和 0X0A)的第一个字节 0X0D 时,计数器将不再增加,等待 0X0A 的到来,而如果 0X0A 没有来到,则认为这次接收失败,重新开始下一次接收。
如果顺利接收到 0X0A,则标记 USART_RX_STA 的第 15 位,这样完成一次接收,并等待该位被其他程序清除,从而开始下一次的接收,而如果迟迟没有收到 0X0D,那么在接收数据超过 USART_REC_LEN 的时候,则会丢弃前面的数据,重新接收。
中断相应函数代码如下:
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART1); //读取接收到的数据
if((USART_RX_STA&0x8000)==0)//接收未完成
{
if(USART_RX_STA&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
else USART_RX_STA|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收
}
}
}
}
}
int main(void)
{
u16 t;
u16 len;
u16 times=0;
delay_init(); //延时函数初始化
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
uart_init(115200); //串口初始化为115200
LED_Init(); //LED端口初始化
KEY_Init(); //初始化与按键连接的硬件接口
while(1)
{
if(USART_RX_STA&0x8000)
{
len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度
printf("\r\n您发送的消息为:\r\n\r\n");
for(t=0;t<len;t++)
{
USART_SendData(USART1, USART_RX_BUF[t]);//向串口1发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束
}
printf("\r\n\r\n");//插入换行
USART_RX_STA=0;
}else
{
times++;
if(times%5000==0)
{
printf("\r\n精英STM32开发板 串口实验\r\n");
printf("正点原子@ALIENTEK\r\n\r\n");
}
if(times%200==0)printf("请输入数据,以回车键结束\n");
if(times%30==0)LED0=!LED0;//闪烁LED,提示系统正在运行.
delay_ms(10);
}
}
}
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2)函数, 该函数是设置中断分组号为 2,也就是 2 位抢占优先级和 2 位子优先级。
USART_SendData(USART1, USART_RX_BUF[t]); //向串口 1 发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);
第一句,其实就是发送一个字节到串口。
第二句,就是我们在我们发送一个数据到串口之后,要检测这个数据是否已经被发送完成了。USART_FLAG_TC 是宏定义的数据发送完成标识符。
首先打开串口调试助手。任何一个串口调试助手都是可以的。正点原子中使用的是旧版本的XCOM2.0。
我们在程序上 面设置了必须输入回车,串口才认可接收到的数据,所以必须在发送数据后再发送一个回车符, 这里 XCOM 提供的发送方法是通过勾选发送新行实现。
只要勾选了这个选项,每次发送数据后,XCOM 都会自动多发一个回车(0X0D+0X0A)。设置好了发送新行,我们再在发送区输入你想要发送的文字,然后单击发送,就能实现发送数据。
发送的数据被打印出来了,说明实验成功。
前面讲了USART协议的介绍和USART协议的编程实现,接下来我们来做一个关于USART的小项目。
使用STM32单片机用USART协议对ESP8266(ESP-01S)进行读取和写入数据。
本章实验使用的是ESP8266(ESP-01S)模块。实物图片如下:
ESP8266 系列模组是深圳市安信可科技有限公司开发的一系列基于乐鑫 ESP8266 的超低功耗的 UART-WiFi模块的模组,可以方便地进行二次开发,接入云端服务,实现手机 3/4G 全球随时随地的控制,加速产品原型设计。
ESP8266是一款超低功耗的UART-WiFi 透传模块,拥有业内极富竞争力的封装尺寸和超低能耗技术,专为移动设备和物联网应用设计,可将用户的物理设备连接到Wi-Fi 无线网络上,进行互联网或局域网通信,实现联网功能。
ESP8266是一个完整且自成体系的Wi-Fi网络解决方案,能够搭载软件应用,或通过另一个应用处理器卸载所有Wi-Fi网络功能。在搭载应用并作为设备中唯一的应用处理器时,能够直接从外接闪存中启动。内置的高速缓冲存储器有利于提高系统性能,并减少内存需求。
Non-FOTA 下载地址
FOTA 下载地址
MQTT最大优点在于,可以以极少的代码和有限的带宽,为连接远程设备提供实时可靠的消息服务。
MQTT是为硬件性能低下的远程设备以及网络状况糟糕的情况下而设计的发布/订阅型消息协议,为此,它需要一个消息中间件,以解决当前繁重的资料传输协议,如:HTTP。
MQTT作为一种低开销、低带宽占用的即时通讯协议,使其在物联网、小型设备、移动应用等方面有较广泛的应用。
1、使用发布/订阅消息模式,提供一对多的消息发布,解除应用程序耦合。
2、对负载内容屏蔽的消息传输。
3、使用TCP/IP提供网络连接。
4、有三种消息发布服务质量:
“至多一次”,消息发布完全依赖底层TCP/IP网络。会发生消息丢失或重复。
“至少一次”,确保消息到达,但消息重复可能会发生。
“只有一次”,确保消息到达一次。在一些要求比较严格的计费系统中,可以使用此级别。
5、小型传输,开销很小(固定长度的头部是2字节),协议交换最小化,以降低网络流量。
6、
使用Last Will和Testament特性通知有关各方客户端异常中断的机制。
Last Will:即遗言机制,用于通知同一主题下的其他设备发送遗言的设备已经断开了连接。
Testament:遗嘱机制,功能类似于Last Will。
实现MQTT协议需要客户端和服务器端通讯完成,在通讯过程中,MQTT协议中有三种身份:发布者(Publish)、代理(Broker)(服务器)、订阅者(Subscribe)。
其中,消息的发布者和订阅者都是客户端,消息代理是服务器,消息发布者可以同时是订阅者。
MQTT传输的消息分为:主题(Topic)和负载(payload)两部分:
1、Topic,可以理解为消息的类型,订阅者订阅(Subscribe)后,就会收到该主题的消息内容(payload);
2、payload,可以理解为消息的内容,是指订阅者具体要使用的内容。
客户端可以建立与服务器的连接,订阅主题、接受消息、发布消息等
服务器可以是一个应用程序或一台设备。用于接受来自客户端的网络连接,接受发布的消息、转发订阅相关主题的客户端的消息、等
应用首先需要 MQTT服务器,其次需要客户端
然后要客户端跟服务器进行连接
连接之后就可以 订阅主题 收到该主题发布的信息 ,向特定主题发布信息
1、登录安信可官网,找到ESP8266的AT指令集、对应的MQTT固件包以及烧录工具。
选择这个固件,下载。
这是下载下来的。先保存。再去下载一个用于烧录固件的软件
然后打开烧固件软件和.bin文件
安信可官网:https://docs.ai-thinker.com
资源链接下载:https://pan.baidu.com/s/1ADERbw5hlA47kNwbUrO2_A
提取码:wyw6
(链接中已包含笔者下载的ESP8266的AT指令集、对应的MQTT固件包以及烧录工具)
<注:本文后面已付上完整工程链接>
2、连接好线路,进行烧录。
注:
a 用串口助手进行连接的连线方式:
串口助手 ESP-01S
3.3V………………3.3V
3.3V…………………EN
TXD…………………RX
RXD…………………TX
GND…………………GND
GND…………………IO0
b 用烧录工具烧录MQTT固件库
ESP-01S插入串口--插入电脑,复位一下,有显示ready就算成功。然后这一步就算完成了。
3、用串口助手测试一下AT。
连线方式:
串口助手 ESP-01S
3.3V………………3.3V
TXD…………………RX
RXD…………………TX
GND…………………GND
1、用串口助手连接ESP-01S,参照第一步的第3点
2、系统框架
3、注册阿里云,并配置产品
3.1打开阿里云-->阿里云-为了无法计算的价值 (aliyun.com)
3.2
3.3进入物联网平台
3.4进入控制台
3.5创建产品
3.6配置不需要太多改动,命名一下就好
4、连接阿里云
通过串口助手连接ESP-01S,发送如下AT指令:
1)AT+RST
2)AT+RESTORE
3)AT+CWMODE=1
4)AT+CIPSNTPCFG=1,8,"ntp1.aliyun.com"
5)AT+CWJAP="SSID","SSID_password" //WIFI名称,密码
例:AT+CWJAP="WYW","wyw123456"
6)AT+MQTTUSERCFG=0,1,"NULL","name","password",0,0,""
例:AT+MQTTUSERCFG=0,1,"NULL","ESP8266&i4pkPbg9Yho","1e7bfe3525ded73f7422a87faf732a34b7aa27439a8f5eb39530a8bef3256267",0,0,""
7)AT+MQTTCLIENTID=0,"ClienID"//每个逗号前加\
例:AT+MQTTCLIENTID=0,"i4pkPbg9Yho.ESP8266|securemode=2\,signmethod=hmacsha256\,timestamp=1672834993446|"
完成这7步就可以实现连接了。
8)AT+MQTTCONN=0,"域名",1883,1
例:AT+MQTTCONN=0,"iot-06z00fx8mxo9kft.mqtt.iothub.aliyuncs.com",1883,1
"name","password","ClienID","域名"参数均可在阿里云查找到。如下图
("name","password","ClienID"俗称三元组)
9)AT+MQTTSUB=0,"订阅topic",1 //订阅的主题可在云端设备的“自定义Topic列表”复制进去(要复制完整)
例:AT+MQTTSUB=0,"/i4pkPbg9Yho/ESP8266/user/get",1
10)AT+MQTTPUB=0,"发布topic","AJson格式内容",1,0 //发布的主题可在云端设备的“自定义Topic列表”复制进去(要复制完整)
例:AT+MQTTPUB=0,"/i4pkPbg9Yho/ESP8266/user/update","{\"LED\":1}",1,0
最后说明下,很多不返回OK的原因可能如下:
1)没开启wifi,或者wifi断了
2)没有勾选发送新行。任何无线模块的AT指令都是需要\r\n的,也就是新行!
阿里云官网:阿里云-为了无法计算的价值 (aliyun.com)https://www.aliyun.com/
写指令,判断服务器发回来的值
其实就是把上一步中通过串口助手发送AT指令改换为通过STM32发送AT指令,将AT指令修改为C语言形式,以 printf 函数发送,再加入延时函数实现
通过以下代码能够实现阿里云控制STM32单片机LED灯的亮灭
代码如下:
- int main(void)
-
- {
-
- u16 t;
-
- u16 len;
-
- u16 times=0;
-
- delay_init(); //延时函数初始化
-
- NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
-
- uart_init(115200); //串口初始化为115200
-
- LED_Init(); //LED端口初始化
-
- KEY_Init(); //初始化与按键连接的硬件接口
-
-
-
- LED0=0;
-
-
-
- printf("AT+RST\r\n");
-
- delay_ms(4000);
-
-
-
- printf("AT+RESTORE\r\n");
-
- delay_ms(4000);
-
-
-
- printf("AT+CWMODE=1\r\n");
-
- delay_ms(2000);
-
-
-
- printf("AT+CIPSNTPCFG=1,8,\"ntp1.aliyun.com\"\r\n");
-
- delay_ms(2000);
-
-
-
- printf("AT+CWJAP=\"1404*\",\"15152906882\"\r\n");
-
- delay_ms(5000);
-
- delay_ms(5000);
-
- delay_ms(5000);
-
- delay_ms(5000);
-
-
-
- printf("AT+MQTTUSERCFG=0,1,\"NULL\",\"ESP8268&a1A4PwdrMWk\",\"540729f8cf551c11eca6a970c47f4fbf675855477536f709e7e99ad9e8355ab5\",0,0,\"\"\r\n");
-
- delay_ms(2000);
-
-
-
- printf("AT+MQTTCLIENTID=0,\"a1A4PwdrMWk.ESP8268|securemode=2\\,signmethod=hmacsha256\\,timestamp=1673014904851|\"\r\n");
-
- delay_ms(5000);
-
-
-
-
-
- printf("AT+MQTTCONN=0,\"a1A4PwdrMWk.iot-as-mqtt.cn-shanghai.aliyuncs.com\",1883,1\r\n");
-
- delay_ms(5000);
-
- delay_ms(5000);
-
- delay_ms(5000);
-
-
-
- printf("AT+MQTTSUB=0,\"/a1A4PwdrMWk/ESP8268/user/get\",1\r\n");
-
- delay_ms(5000);
-
-
-
- printf("AT+MQTTPUB=0,\"/a1A4PwdrMWk/ESP8268/user/update\",\"{\\\"LED\\\":1}\",1,0\r\n");
-
- LED0=1;
-
-
-
- while(1)
-
- {
-
- if(USART_RX_STA&0x8000) //判断接受是否完成
-
- {
-
- if(strstr((const char*)USART_RX_BUF,"on")) //输入“on”,LED亮起
-
- {
-
- LED0=0;
-
- }
-
- if(strstr((const char*)USART_RX_BUF,"off")) //输入“off”,LED熄灭
-
- {
-
- LED0=1;
-
- }
-
- memset(USART_RX_BUF,0,500);
-
- USART_RX_STA=0;
-
- }
-
-
-
- }
-
- }
当烧录完成后,在阿里云服务器我们的设备中就可以看到我们订阅的topic,在阿里云中的topic上发送消息,STM32也会打印出接收到的消息
这是通过我们在代码中的定义:输入“on”,LED亮起,输入“off”,LED熄灭
注意:
1)注意转义字符,例如:“ " ”要换为“ \" ”,“ \ ”要换为“ \\ ”,这里尤为要注意,因为是最容易忽略的地方,笔者在此处踩坑极多
2)所有的AT指令发送都必须加回车换行,否则视为发送失败,当时以为自己固件出问题了,但其实不然,这里面的回车换行是\r\n,不是单独的\n。
完整工程链接:https://pan.baidu.com/s/1EqOuSZhnWCNCqIMAXqqd_Q
提取码:wywq
编程主要实现的是2个部分,如下:
序号 | 操作 | 函数名称 |
1 | USART的接受和发送 | void USART_SendData(USART_TypeDef* USARTx, u8 Data); u16 USART_ReceiveData(USART_TypeDef* USARTx); |
1、串口发送数据最直接的方式就是标准调用库函数:
void USART_SendData(USART_TypeDef* USARTx, u8 Data);
第一个参数是发送的串口号,第二个参数是要发送的数据了。但是用过的朋友应该觉得不好用,一次只能发送单个字符,所以我们有必要根据这个函数加以扩展。
void Send_data(u8 *s)
{
while(*s!='\0')
{
while(USART_GetFlagStatus(USART1,USART_FLAG_TC )==RESET);
USART_SendData(USART1,*s);
s++;
}
}
以上程序的形参就是我们调用该函数时要发送的字符串,这里通过循环调用USART_SendData来一 一发送我们的字符串。
while(USART_GetFlagStatus(USART1,USART_FLAG_TC )==RESET);
这句话有必要加,他是用于检查串口是否发送完成的标志,如果不加这句话会发生数据丢失的情况。这个函数只能用于串口1发送。有些时候根据需要,要用到多个串口发送那么就还需要改进这个程序。如下:
void Send_data(USART_TypeDef * USARTx,u8 *s)
{
while(*s!='\0')
{
while(USART_GetFlagStatus(USARTx,USART_FLAG_TC )==RESET);
USART_SendData(USARTx,*s);
s++;
}
}
这样就可实现任意的串口发送。但有一点,我在使用实时操作系统的时候(如UCOS,Freertos等),需考虑函数重入的问题。当然也可以简单的实现把该函数复制一下,然后修改串口号也可以避免该问题。然而这个函数不能像printf那样传递多个参数,所以还可以在改进,最终程序如下
void USART_printf ( USART_TypeDef * USARTx, char * Data, ... )
{
const char *s;
int d;
char buf[16];
va_list ap;
va_start(ap, Data);
while ( * Data != 0 ) // 判断是否到达字符串结束符
{
if ( * Data == 0x5c ) //'\'
{
switch ( *++Data )
{
case 'r': //回车符
USART_SendData(USARTx, 0x0d);
Data ++;
break;
case 'n': //换行符
USART_SendData(USARTx, 0x0a);
Data ++;
break;
default:
Data ++;
break;
}
}
else if ( * Data == '%')
{ //
switch ( *++Data )
{
case 's': //字符串
s = va_arg(ap, const char *);
for ( ; *s; s++)
{
USART_SendData(USARTx,*s);
while( USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET );
}
Data++;
break;
case 'd':
//十进制
d = va_arg(ap, int);
itoa(d, buf, 10);
for (s = buf; *s; s++)
{
USART_SendData(USARTx,*s);
while( USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET );
}
Data++;
break;
default:
Data++;
break;
}
}
else USART_SendData(USARTx, *Data++);
while ( USART_GetFlagStatus ( USARTx, USART_FLAG_TXE ) == RESET );
}
}
该函数就可以像printf使用可变参数,方便很多。通过观察函数但这个函数只支持了%d,%s的参数,想要支持更多,可以仿照printf的函数写法加以补充。
2、直接使用printf函数。
很多朋友都知道想要STM32要直接使用printf不行的。需要加上以下的重映射
函数
如果不想添加以上代码,也可以勾选以下的Use MicroLI选项来支持printf函数使用。
串口接收最后应有一定的协议,如发送一帧数据应该有头标志或尾标志,也可两个标志都有。这样在处理数据时既能能保证数据的正确接收,也有利于接收完后我们处理数据。串口的配置在这里就不在赘述,这里我以串口2接收中断服务程序函数且接收的数据包含头尾标识为例。
#define Max_BUFF_Len 18
unsigned char Uart2_Buffer[Max_BUFF_Len];
unsigned int Uart2_Rx=0;
void USART2_IRQHandler()
{
if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生
{
USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志
Uart2_Buffer[Uart2_Rx] = USART_ReceiveData(USART2); //接收串口1数据到buff缓冲区
Uart2_Rx++;
if(Uart2_Buffer[Uart2_Rx-1] == 0x0a || Uart2_Rx == Max_BUFF_Len) //如果接收到尾标识是换行符(或者等于最大接受数就清空重新接收)
{
if(Uart2_Buffer[0] == '+') //检测到头标识是我们需要的
{
printf("%s\r\n",Uart2_Buffer); //这里我做打印数据处理
Uart2_Rx=0;
}
else
{
Uart2_Rx=0; //不是我们需要的数据或者达到最大接收数则开始重新接收
}
}
}
}
数据的头标识为“\n”既换行符,尾标识为“+”。该函数将串口接收的数据存放在USART_Buffer数组中,然后先判断当前字符是不是尾标识,如果是说明接收完毕,然后再来判断头标识是不是“+”号,如果还是那么就是我们想要的数据,接下来就可以进行相应数据的处理了。但如果不是那么就让Usart2_Rx=0重新接收数据。这样做的有以下好处:
1.可以接受不定长度的数据,最大接收长度可以通过Max_BUFF_Len来更改
2.可以接受指定的数据
3.防止接收的数据使数组越界
这里我的把接受正确数据直接打印出来,也可以通过设置标识位,然后在主函数里面轮询再操作。
以上的接收形式,是中断一次就接收一个字符,这在UCOS等实时内核系统中频繁的中断,非常消耗CPU资源,在有些时候我们需要接收大量数据时且波特率很高的情况下,长时间中断会带来一些额外的问题。所以以DMA形式配合串口的IDLE(空闲中断)来接受数据将会大大的提高CPU的利用率,减少系统资源的消耗。首先还是先看代码。
#define DMA_USART1_RECEIVE_LEN 18
void USART1_IRQHandler(void)
{
u32 temp = 0;
uint16_t i = 0;
if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)
{
USART1->SR;
USART1->DR; //这里我们通过先读SR(状态寄存器)和DR(数据寄存器)来清USART_IT_IDLE标志
DMA_Cmd(DMA1_Channel5,DISABLE);
temp = DMA_USART1_RECEIVE_LEN - DMA_GetCurrDataCounter(DMA1_Channel5); //接收的字符串长度=设置的接收长度-剩余DMA缓存大小
for (i = 0;i < temp;i++)
{
Uart2_Buffer[i] = USART1_RECEIVE_DMABuffer[i];
}
//设置传输数据长度
DMA_SetCurrDataCounter(DMA1_Channel5,DMA_USART1_RECEIVE_LEN);
//打开DMA
DMA_Cmd(DMA1_Channel5,ENABLE);
}
}
之前的串口中断是一个一个字符的接收,现在改为串口空闲中断,就是一帧数据过来才中断进入一次。而且接收的数据时候是DMA来搬运到我们指定的缓冲区(也就是程序中的USART1_RECEIVE_DMABuffer数组),是不占用CPU时间资源的。具体什么是IDLE中断和DMA需要朋友们先行了解。
参考链接:
https://blog.csdn.net/jdh99/article/details/8444474
https://blog.csdn.net/phker/article/details/51925668
最后在讲下DMA的发送
#define DMA_USART1_SEND_LEN 64
void DMA_SEND_EN(void)
{
DMA_Cmd(DMA1_Channel4, DISABLE);
DMA_SetCurrDataCounter(DMA1_Channel4,DMA_USART1_SEND_LEN);
DMA_Cmd(DMA1_Channel4, ENABLE);
}
这里需要注意下DMA_Cmd(DMA1_Channel4,DISABLE)函数需要在设置传输大小之前调用一下,否则不会重新启动DMA发送。
有了以上的接收方式,对一般的串口数据处理是没有问题的了。下面再讲一下,在ucosiii中我使用信号量+消息队列+储存管理的形式来处理我们的串口数据。先来说一下这种方式对比其他方式的一些优缺点。一般对串口的处理形式是"生产者"和"消费者"的模式,即本次接收的数据要马上处理,否则当数据大量涌进的时候,就来不及"消费"掉生产者(串口接收中断)的数据,那么就会丢失本次的数据处理。所以使用队列就能够很方便的解决这个问题。
在下面的程序中,对数据的处理是先接受,在处理,如果在处理的过程中,有串口中断接受数据,那么就把它依次放在队列中,队列的特征是先进先出,在串口中就是先处理先接受的数据,所以根据生产和消费的速度,定义不同大小的消息队列缓冲区就可以了。缺点就是太占用系统资源,一般51单片机是没可能了。下面是从我做的项目中截取过来的程序
OS_MSG_SIZE Usart1_Rx_cnt; //字节大小计数值
unsigned char Usart1_data; //每次中断接收的数据
unsigned char* Usart1_Rx_Ptr; //储存管理分配内存的首地址的指针
unsigned char* Usart1_Rx_Ptr1; //储存首地址的指针
void USART1_IRQHandler()
{
OS_ERR err;
OSIntEnter();
if(USART_GetFlagStatus(USART1,USART_FLAG_RXNE) != RESET) //中断产生
{
USART_ClearFlag(USART1, USART_FLAG_RXNE); //清除中断标志
Usart1_data = USART_ReceiveData(USART1); //接收串口1数据到buff缓冲区
if(Usart1_data =='+') //接收到数据头标识
{
// OSSemPend((OS_SEM* )&SEM_IAR_UART, //这里请求信号量是为了保证分配的存储区,但一般来说不允许
// (OS_TICK )0, //在终端服务函数中调用信号量请求但因为
// (OS_OPT )OS_OPT_PEND_NON_BLOCKING,//我OPT参数设置为非阻塞,所以可以这么写
// (CPU_TS* )0,
// (OS_ERR* )&err);
// if(err==OS_ERR_PEND_WOULD_BLOCK) //检测到当前信号量不可用
// {
// printf("error");
// }
Usart1_Rx_Ptr=(unsigned char*) OSMemGet((OS_MEM*)&UART1_MemPool,&err);//分配存储区
Usart1_Rx_Ptr1=Usart1_Rx_Ptr; //储存存储区的首地址
}
if(Usart1_data == 0x0a ) //接收到尾标志
{
*Usart1_Rx_Ptr++=Usart1_data;
Usart1_Rx_cnt++; //字节大小增加
OSTaskQPost((OS_TCB * )&Task1_TaskTCB,
(void * )Usart1_Rx_Ptr1, //发送存储区首地址到消息队列
(OS_MSG_SIZE )Usart1_Rx_cnt,
(OS_OPT )OS_OPT_POST_FIFO, //先进先出,也可设置为后进先出,再有地方很有用
(OS_ERR * )&err);
Usart1_Rx_Ptr=NULL; //将指针指向为空,防止修改
Usart1_Rx_cnt=0; //字节大小计数清零
}
else
{
*Usart1_Rx_Ptr=Usart1_data; //储存接收到的数据
Usart1_Rx_Ptr++;
Usart1_Rx_cnt++;
}
}
OSIntExit();
}
上面被注释掉的代码为我是为了防止当分区中没有空闲的存储块时加入信号量,打印出报警信息。当然我们也可以将存储块直接设置大一点,但是还是无法避免当没有可有存储块时会程序会崩溃现象。希望懂的朋友能告知下~。
下面是串口数据处理任务,这里删去了其他代码,只把他打印出来了而已。
void task1_task(void *p_arg)
{
OS_ERR err;
OS_MSG_SIZE Usart1_Data_size;
u8 *p;
while(1)
{
p=(u8*)OSTaskQPend((OS_TICK )0, //请求消息队列,获得储存区首地址
(OS_OPT )OS_OPT_PEND_BLOCKING,
(OS_MSG_SIZE* )&Usart1_Data_size,
(CPU_TS* )0,
(OS_ERR* )&err);
printf("%s\r\n",p); //打印数据
delay_ms(100);
OSMemPut((OS_MEM* )&UART1_MemPool, //释放储存区
(void* )p,
(OS_ERR* )&err);
OSSemPost((OS_SEM* )&SEM_IAR_UART, //释放信号量
(OS_OPT )OS_OPT_POST_NO_SCHED,
(OS_ERR* )&err);
OSTimeDlyHMSM(0,0,1,500,OS_OPT_TIME_PERIODIC,&err);
}
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。