当前位置:   article > 正文

深度学习第一次作业 - 波士顿房价预测_波士顿房价预测实验报告

波士顿房价预测实验报告

import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_boston
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置在matplotlib上的中文字体
plt.rcParams['axes.unicode_minus'] = False # 在matplotlib绘图正常显示符号


x_data = load_boston().data # 导入所有特征变量
y_data = load_boston().target # 导入目标变量房价
feature_name = load_boston().feature_names # 导入特征名
df = pd.DataFrame(x_data,columns=feature_name)
df['MEDV'] = y_data
df.head()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTATMEDV
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.9824.0
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.1421.6
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.0334.7
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.9433.4
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.3336.2
  • CRIM: 城镇人均犯罪率
  • ZN: 住宅用地所占比例
  • INDUS: 城镇仲非住宅用地所占比例
  • CHAS: 虚拟变量,用于回归分析
  • NOX: 环保指数
  • RM: 每栋住宅的房间数
  • AGE: 1940年以前建成的自祝单位的比例
  • DIS: 距离5个波士顿的就业中心的加权距离
  • RAD: 距离高速公路的便利指数
  • TAX: 每一万美元的不动产税率
  • PTRATIO: 城镇中的教师学生比例
  • B: 城镇中的黑人比例
  • LSTAT: 地区中有多少房东属于低收入人群
  • MEDV: 自住房屋房价中位数

查看各个特征是否有相关性,判断用哪种模型合适

plt.figure(figsize=(12,8))
sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='PuBu')
  • 1
  • 2
<AxesSubplot: >
  • 1

png

数据不存在相关性较小的属性,也不用担心共线性,故我们可以用线性回归模型去预测

df.corr()['MEDV'].sort_values()
  • 1
LSTAT     -0.737663
PTRATIO   -0.507787
INDUS     -0.483725
TAX       -0.468536
NOX       -0.427321
CRIM      -0.388305
RAD       -0.381626
AGE       -0.376955
CHAS       0.175260
DIS        0.249929
B          0.333461
ZN         0.360445
RM         0.695360
MEDV       1.000000
Name: MEDV, dtype: float64
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

尝试了解因变量和自变量,自变量和自变量之间的关系

sns.pairplot(df[["LSTAT","RM","PTRATIO","MEDV"]])
  • 1
<seaborn.axisgrid.PairGrid at 0x2c88da29a90>
  • 1

png

划分训练集和测试集

由于数据没有null值,并且都是连续型数据,所以暂时不用对数据进行过多的处理,不够既然要建立模型,首先就要进行对housing分为训练集和测试集,取出了大概百分之20的数据作为测试集,剩下的百分之70为训练集

X ,y = x_data,y_data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=888)
  • 1
  • 2

建立线性回归模型

首先,利用线性回归模型对数据进行训练,并预测测试集数据

linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
coef = linear_model.coef_#回归系数
line_pre = linear_model.predict(X_test)
print('SCORE:{:.4f}'.format(linear_model.score(X_test, y_test)))
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test, line_pre))))
coef
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
SCORE:0.7559
RMSE:4.3708





array([-1.19007229e-01,  3.64055815e-02,  1.68552680e-02,  2.29397031e+00,
       -1.60706448e+01,  3.72371469e+00,  9.22765437e-03, -1.30674803e+00,
        3.43072685e-01, -1.45830386e-02, -9.73486692e-01,  7.89797436e-03,
       -5.72555056e-01])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

线性回归相关的系数如下

df_coef = pd.DataFrame()
df_coef['Title'] = df.columns.delete(-1)
df_coef['Coef'] = coef
df_coef
  • 1
  • 2
  • 3
  • 4
TitleCoef
0CRIM-0.119007
1ZN0.036406
2INDUS0.016855
3CHAS2.293970
4NOX-16.070645
5RM3.723715
6AGE0.009228
7DIS-1.306748
8RAD0.343073
9TAX-0.014583
10PTRATIO-0.973487
11B0.007898
12LSTAT-0.572555
hos_pre = pd.DataFrame()
hos_pre['Predict'] = line_pre
hos_pre['Truth'] = y_test
hos_pre.plot()
  • 1
  • 2
  • 3
  • 4
<AxesSubplot: >
  • 1

png

  • 得出score为76%,从上图得知预测的房价整体偏小,在10-35这个区间预测结果较为准确,超过这个区间预测价格偏小,可进一步对原始数据离群值做处理
  • 数据比较干净,练习起来缺少特征工程部分的工作,而且是预测性模型,相比分类问题少了模型选择上的空间

特征选择重建模型

试使用相关性最高的3个特征量重建模型,并与原模型进行比较

df.corr()['MEDV'].abs().sort_values(ascending=False).head(4)
  • 1
MEDV       1.000000
LSTAT      0.737663
RM         0.695360
PTRATIO    0.507787
Name: MEDV, dtype: float64
  • 1
  • 2
  • 3
  • 4
  • 5
X2 = np.array(df[['LSTAT','RM','PTRATIO']])
X2_train, X2_test, y_train, y_test = train_test_split(X2, y, random_state=1,test_size=0.2)
linear_model2 = LinearRegression()
linear_model2.fit(X2_train,y_train)
print(linear_model2.intercept_)
print(linear_model2.coef_)
line2_pre = linear_model2.predict(X2_test)  #预测值
print('SCORE:{:.4f}'.format(linear_model2.score(X2_test, y_test)))#模型评分
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test, line2_pre))))#RMSE(标准误差)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
24.112838451644947
[-0.59061956  3.81700007 -0.97465491]
SCORE:0.6959
RMSE:5.4820
  • 1
  • 2
  • 3
  • 4

在选取的特征数量远小于第一个模型情况下,得分0.695,略小于第一个模型的0.7559

尝试使用GradientBoosting

X ,y = x_data,y_data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=888)
  • 1
  • 2
from sklearn import ensemble
clf = ensemble.GradientBoostingRegressor()
clf.fit(X_train, y_train)
clf_pre=clf.predict(X_test) #预测值
print('SCORE:{:.4f}'.format(clf.score(X_test, y_test)))#模型评分
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test, clf_pre))))#RMSE(标准误差)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
SCORE:0.9188
RMSE:2.5209
  • 1
  • 2

可以看出,梯度决策树(Gradient Boosted Decision Tree)算法能得到非常良好的结果

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/131496
推荐阅读
相关标签
  

闽ICP备14008679号