赞
踩
PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PP-OCR模型对数据自动标注和重新识别。使用Python3和PyQT5编写,支持矩形框标注、表格标注、不规则文本标注、关键信息标注模式,导出格式可直接用于PaddleOCR检测和识别模型的训练。
目前已经将最新的PPOCRLabel工具打包成可执行文件,双击即可使用,目前集成了最新的模型,方便使用。
解压后,再双击exe文件打开
下载地址:基于PaddleOCR的最新版PPOCRLabel文字识别标注工具
如果您只需要标注文字信息和位置,推荐按照以下步骤展开:
表格标注针对表格的结构化提取,将图片中的表格转换为Excel格式,因此标注时需要配合外部软件打开Excel同时完成。在PPOCRLabel软件中完成表格中的文字信息标注(文字与位置)、在Excel文件中完成表格结构信息标注,推荐的步骤为:
表格识别:打开表格图片后,点击软件右上角 表格识别
按钮,软件调用PP-Structure中的表格识别模型,自动为表格打标签,同时弹出Excel
更改标注结果:以表格中的单元格为单位增加标注框(即一个单元格内的文字都标记为一个框)。标注框上鼠标右键后点击 单元格重识别
可利用模型自动识别单元格内的文字。
注意:如果表格中存在空白单元格,同样需要使用一个标注框将其标出,使得单元格总数与图像中保持一致。
调整单元格顺序:点击软件视图-显示框编号
打开标注框序号,在软件界面右侧拖动 识别结果
一栏下的所有结果,使得标注框编号按照从左到右,从上到下的顺序排列,按行依次标注。
标注表格结构:在外部Excel软件中,将存在文字的单元格标记为任意标识符(如 1
),保证Excel中的单元格合并情况与原图相同即可(即不需要Excel中的单元格文字与图片中的文字完全相同)
导出JSON格式:关闭所有表格图像对应的Excel,点击 文件
-导出表格标注
,生成gt.txt标注文件。
[1] PPOCRLabel以文件夹为基本标记单位,打开待标记的图片文件夹后,不会在窗口栏中显示图片,而是在点击 "选择文件夹" 之后直接将文件夹下的图片导入到程序中。
[2] 图片状态表示本张图片用户是否手动保存过,未手动保存过即为 “X”,手动保存过为 “√”。点击 “自动标注”按钮后,PPOCRLabel不会对状态为 “√” 的图片重新标注。
[3] 点击“重新识别”后,模型会对图片中的识别结果进行覆盖。因此如果在此之前手动更改过识别结果,有可能在重新识别后产生变动。
[4] PPOCRLabel产生的文件放置于标记图片文件夹下,包括一下几种,请勿手动更改其中内容,否则会引起程序出现异常。
文件名 | 说明 |
---|---|
Label.txt | 检测标签,可直接用于PPOCR检测模型训练。用户每确认5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。 |
fileState.txt | 图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。 |
Cache.cach | 缓存文件,保存模型自动识别的结果。 |
rec_gt.txt | 识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "导出识别结果"后产生。 |
crop_img | 识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。 |
快捷键 | 说明 |
---|---|
Ctrl + shift + R | 对当前图片的所有标记重新识别 |
W | 新建矩形框 |
Q | 新建多点框 |
X | 框逆时针旋转 |
C | 框顺时针旋转 |
Ctrl + E | 编辑所选框标签 |
Ctrl + X | --kie 模式下,修改 Box 的关键字种类 |
Ctrl + R | 重新识别所选标记 |
Ctrl + C | 【复制并粘贴】选中的标记框 |
Ctrl + 鼠标左键 | 多选标记框 |
Backspace | 删除所选框 |
Ctrl + V | 确认本张图片标记 |
Ctrl + Shift + d | 删除本张图片 |
D | 下一张图片 |
A | 上一张图片 |
Ctrl++ | 缩小 |
Ctrl-- | 放大 |
↑→↓← | 移动标记框 |
默认模型:PPOCRLabel默认使用PaddleOCR中的中英文超轻量OCR模型,支持中英文与数字识别,多种语言检测。
模型语言切换:用户可通过菜单栏中 "PaddleOCR" - "选择模型" 切换内置模型语言,目前支持的语言包括法文、德文、韩文、日文。具体模型下载链接可参考PaddleOCR模型列表.
自定义模型:如果用户想将内置模型更换为自己的推理模型,可根据自定义模型代码使用,通过修改PPOCRLabel.py中针对PaddleOCR类的实例化 或者PPStructure实现,例如指定检测模型:self.ocr = PaddleOCR(det=True, cls=True, use_gpu=gpu, lang=lang)
,在 det_model_dir
中传入自己的模型即可。
PPOCRLabel支持三种导出方式:
自动导出:点击“文件 - 自动导出标记结果”后,用户每确认过一张图片,程序自动将标记结果写入Label.txt中。若未开启此选项,则检测到用户手动确认过5张图片后进行自动导出。
默认情况下自动导出功能为关闭状态
手动导出:点击“文件 - 导出标记结果”手动导出标记。
关闭应用程序导出
在终端中输入以下命令执行数据集划分脚本:
- cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
- python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
参数说明:
trainValTestRatio
是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是6:2:2
datasetRootPath
是PPOCRLabel标注的完整数据集存放路径。默认路径是 PaddleOCR/train_data
分割数据集前应有如下结构:
- |-train_data
- |-crop_img
- |- word_001_crop_0.png
- |- word_002_crop_0.jpg
- |- word_003_crop_0.jpg
- | ...
- | Label.txt
- | rec_gt.txt
- |- word_001.png
- |- word_002.jpg
- |- word_003.jpg
- | ...
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。