赞
踩
在评估融合图像质量时,由于作者使用的是python代码进行融合,但有些评价指标只有matlab代码就十分不方便,所以将其重写为python代码,之前已经实现了 Q A B / F Q^{AB/F} QAB/F的python代码,详见图像融合质量评价方法的python代码实现——Qabf。
MS-SSIM由Z. Wang,E.P. Simoncelli等人提出,是一种多尺度结构相似性方法,在结合观看条件的变化方面,它比以前的单尺度方法具有更大的灵活性。从Multiscale structural similarity for image quality assessment中的实验结果表明,在适当的参数设置下,多尺度方法的性能优于最佳的单尺度SSIM模型以及最新的图像质量指标。公式如下: M S S S I M ( Z , K ) = [ l M ( Z , K ) ] α M ∏ i = 1 M [ s i ( Z , K ) ] β i [ z i ( Z , K ) ] γ i MSSSIM(Z,K)\;=\;\left[l_M(Z,K)\right]^{\alpha_M}\prod_{i=1}^M\left[s_i(Z,K)\right]^{\beta_i}\left[z_i(Z,K)\right]^{\gamma_i} MSSSIM(Z,K)=[lM(Z,K)]αMi=1∏M[si(Z,K)]βi[zi(Z,K)]γi
matlab的代码可以看图像融合质量评价方法MSSIM、MS-SSIM、FS、Qmi、Qabf与VIFF(三)
python代码如下,有两部分SSIM.py与MSSSIM.py,首先是SSIM.py:
#ssim.py import numpy as np import scipy.signal def ssim_index_new(img1,img2,K,win): M,N = img1.shape img1 = img1.astype(np.float32) img2 = img2.astype(np.float32) C1 = (K[0]*255)**2 C2 = (K[1]*255) ** 2 win = win/np.sum(win) mu1 = scipy.signal.convolve2d(img1,win,mode='valid') mu2 = scipy.signal.convolve2d(img2,win,mode='valid') mu1_sq = np.multiply(mu1,mu1) mu2_sq = np.multiply(mu2,mu2) mu1_mu2 = np.multiply(mu1,mu2) sigma1_sq = scipy.signal.convolve2d(np.multiply(img1,img1),win,mode='valid') - mu1_sq sigma2_sq = scipy.signal.convolve2d(np.multiply(img2, img2), win, mode='valid') - mu2_sq img12 = np.multiply(img1, img2) sigma12 = scipy.signal.convolve2d(np.multiply(img1, img2), win, mode='valid') - mu1_mu2 if(C1 > 0 and C2>0): ssim1 =2*sigma12 + C2 ssim_map = np.divide(np.multiply((2*mu1_mu2 + C1),(2*sigma12 + C2)),np.multiply((mu1_sq+mu2_sq+C1),(sigma1_sq+sigma2_sq+C2))) cs_map = np.divide((2*sigma12 + C2),(sigma1_sq + sigma2_sq + C2)) else: numerator1 = 2*mu1_mu2 + C1 numerator2 = 2*sigma12 + C2 denominator1 = mu1_sq + mu2_sq +C1 denominator2 = sigma1_sq + sigma2_sq +C2 ssim_map = np.ones(mu1.shape) index = np.multiply(denominator1,denominator2) #如果index是真,就赋值,是假就原值 n,m = mu1.shape for i in range(n): for j in range(m): if(index[i][j] > 0): ssim_map[i][j] = numerator1[i][j]*numerator2[i][j]/denominator1[i][j]*denominator2[i][j] else: ssim_map[i][j] = ssim_map[i][j] for i in range(n): for j in range(m): if((denominator1[i][j] != 0)and(denominator2[i][j] == 0)): ssim_map[i][j] = numerator1[i][j]/denominator1[i][j] else: ssim_map[i][j] = ssim_map[i][j] cs_map = np.ones(mu1.shape) for i in range(n): for j in range(m): if(denominator2[i][j] > 0): cs_map[i][j] = numerator2[i][j]/denominator2[i][j] else: cs_map[i][j] = cs_map[i][j] mssim = np.mean(ssim_map) mcs = np.mean(cs_map) return mssim,mcs
然后是MSSSIM.py:
#msssim.py import numpy as np import cv2 from index.SSIM import ssim_index_new def msssim(img1,img2): K = [0.01,0.03] win = np.multiply(cv2.getGaussianKernel(11, 1.5), (cv2.getGaussianKernel(11, 1.5)).T) # H.shape == (r, c) level = 5 weight = [0.0448,0.2856,0.3001,0.2363,0.1333] method = 'product' M,N = img1.shape H,W = win.shape downsample_filter = np.ones((2,2))/4 img1 = img1.astype(np.float32) img2 = img2.astype(np.float32) mssim_array = [] mcs_array = [] for i in range(0,level): mssim,mcs = ssim_index_new(img1,img2,K,win) mssim_array.append(mssim) mcs_array.append(mcs) filtered_im1 = cv2.filter2D(img1,-1,downsample_filter,anchor = (0,0),borderType=cv2.BORDER_REFLECT) filtered_im2 = cv2.filter2D(img2,-1,downsample_filter,anchor = (0,0),borderType=cv2.BORDER_REFLECT) img1 = filtered_im1[::2,::2] img2 = filtered_im2[::2,::2] print(np.power(mcs_array[:level-1],weight[:level-1])) print(mssim_array[level-1]**weight[level-1]) overall_mssim = np.prod(np.power(mcs_array[:level-1],weight[:level-1]))*(mssim_array[level-1]**weight[level-1]) return overall_mssim
将MRI图像与融合后的图像进行评估,如下:
matlab代码运行结果如下:
python代码运行结果如下:
可以看到两种代码运行结果是一致的。
这个代码还有一个问题在于不能处理24位的图像,不过目前正在进行FMI的matlab代码改python代码,如果完成会继续分享…
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。