赞
踩
目录
3.4 使用for循环计算聚类个数为2至9时的轮廓系数值,寻找最优聚类个数
K-means算法是一种 无监督学习 方法,是最普及的聚类算法,算法使用 一个没有标签 的数据集,然后将数据聚类成不同的组。K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不同的空间,它将数据点分配给簇,以便簇的质心和数据点之间的 平方距离之和最小 ,在这个位置,簇的质心是簇中数据点的算术平均值。
闵可夫斯基距离(Minkowski distance)
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/222599推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。