赞
踩
数据集采用的是kaggle比赛中公开的数据集——泰坦尼克号
对之前的机器学习方法分别进行了预测。
包括:逻辑回归 0.7901234567901234、
神经网络 0.7878787878787877、
KNN 0.8125701459034792、
决策树 0.8080808080808081、
随机森林 0.7991021324354657、 0.8181818181818182
Bagging 0.8282828282828283、和随机森林做集成
Adaboost 0.8181818181818182、和bagging做集成
Stacking 0.8125701459034792
整体代码:
- import pandas
-
- titanic = pandas.read_csv("titanic_train.csv")
-
- # 空余的age填充整体age的中值
- titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median())
- print(titanic.describe())
-
-
-
-
-
- print(titanic["Sex"].unique())
-
- # 把male变成0,把female变成1
- titanic.loc[titanic["Sex"] == "male", "Sex"] = 0
- titanic.loc[titanic["Sex"] == "female", "Sex"] = 1
-
-
-
-
-
-
- print(titanic["Embarked"].unique())
- # 数据填充
- titanic["Embarked"] = titanic["Embarked"].fillna('S')
- # 把类别变成数字
- titanic.loc[titanic["Embarked"] == "S", "Embarked"] = 0
- titanic.loc[titanic["Embarked"] == "C", "Embarked"] = 1
- titanic.loc[titanic["Embarked"] == "Q", "Embarked"] = 2
-
-
-
-
- from sklearn.preprocessing import StandardScaler
-
- # 选定特征
- predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
- x_data = titanic[predictors]
- y_data = titanic["Survived"]
-
- # 数据标准化
- scaler = StandardScaler()
- x_data = scaler.fit_transform(x_data)
-
-
- # 逻辑回归
- from sklearn import model_selection
- from sklearn.linear_model import LogisticRegression
- # 逻辑回归模型
- LR = LogisticRegression()
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(LR, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.7901234567901234
-
-
-
- # 神经网络模型
- from sklearn.neural_network import MLPClassifier
- # 建模
- mlp = MLPClassifier(hidden_layer_sizes=(20,10),max_iter=1000)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(mlp, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.7878787878787877
-
-
-
- # KNN模型
- from sklearn import neighbors
- knn = neighbors.KNeighborsClassifier(21)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(knn, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8125701459034792
-
-
-
- # 决策树模型
- from sklearn import tree
- # 决策树模型
- dtree = tree.DecisionTreeClassifier(max_depth=5, min_samples_split=4)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(dtree, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8080808080808081
-
-
-
- # 随机森林模型
- from sklearn.ensemble import RandomForestClassifier
- RF1 = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(RF1, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.7991021324354657
-
- RF2 = RandomForestClassifier(n_estimators=100, min_samples_split=4)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(RF2, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8181818181818182
-
-
-
- # Bagging
- from sklearn.ensemble import BaggingClassifier
- bagging_clf = BaggingClassifier(RF2, n_estimators=20)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(bagging_clf, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8282828282828283
-
-
- # AdaBoost模型
- from sklearn.ensemble import AdaBoostClassifier
- # AdaBoost模型
- adaboost = AdaBoostClassifier(bagging_clf,n_estimators=10)
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(adaboost, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8181818181818182
-
-
- # Stacking
- from sklearn.ensemble import VotingClassifier
- from mlxtend.classifier import StackingClassifier
-
- sclf = StackingClassifier(classifiers=[bagging_clf, mlp, LR],
- meta_classifier=LogisticRegression())
-
- sclf2 = VotingClassifier([('adaboost',adaboost), ('mlp',mlp), ('LR',LR),('knn',knn),('dtree',dtree)])
-
- # 计算交叉验证的误差
- scores = model_selection.cross_val_score(sclf2, x_data, y_data, cv=3)
- # 求平均
- print(scores.mean())
- # 0.8125701459034792
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。