当前位置:   article > 正文

线性回归、正规方程和梯度下降法_线性回归正规方程

线性回归正规方程

一、线性回归简介

1.定义与公式

线性回归是利用回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

  • 特点:只有一个自变量的情况称为单变量回归,多余一个自变量情况的叫做多元回归

  • 通用公式:
    y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β p x p + ε y = β₀ + β₁x₁ + β₂x₂ + ... + βₚxₚ + ε y=β0+β1x1+β2x2+...+βpxp+ε
    其中,y是因变量(目标值),x₁、x₂、…、xₚ是自变量(特征值),β₀、β₁、β₂、…、βₚ是模型的参数(权重),ε是误差项,表示模型预测值与实际观测值之间的差异,它是一个随机项,表示模型无法完全准确地解释因变量的变异性。

  • 举例:

    • 期末成绩 = 0.7 × 考试成绩 + 0.3 × 平时成绩
    • 房子价格 = 0.02 × 中心区域的距离 + 0.04 × 城市一氧化氮浓度 + (-0.12 × 自住房平均房价)+ 0.254 × 城镇犯罪率

    上面两个例子,可以看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型

2.线性回归的特征与目标的关系分析

线性回归当中主要有两种模型,一种是线性关系,另一种是非线性关系

  • 线性关系:

    • 单变量线性关系:

      在这里插入图片描述

    • 多变量线性关系:

      在这里插入图片描述

  • 非线性关系:

    在这里插入图片描述

3.线性回归应用场景
  • 房价预测
  • 销售额度预测
  • 贷款额度预测

二、线性回归的损失和优化

在这里插入图片描述

绿色线是预测的结果,红色线是真实结果。

1.损失函数(又称最小二乘法)
  • 公式:
    L ( β 0 , β 1 , . . . , β p ) = Σ i ( y i − ( β 0 + β 1 x 1 i + β 2 x 2 i + . . . + β p x p i ) ) 2 L(β₀, β₁, ..., βₚ) = Σᵢ(yᵢ - (β₀ + β₁x₁ᵢ + β₂x₂ᵢ + ... + βₚxₚᵢ))² L(β0,β1,...,βp)=Σi(yi(β0+β1x1i+β2x2i+...+βpxpi))2
    其中,L表示损失函数,yᵢ表示第i个样本的实际观测值,x₁ᵢ、x₂ᵢ、…、xₚᵢ 表示第 i 个样本的自变量(输入变量),β₀、β₁、β₂、…、βₚ表示模型的参数(权重)。

    如何去减少这个损失,使我们预测的结果更加准确些?这里可以通过一些优化算法去优化(其实是数学当中的求导功能)回归的总损失。

2.优化算法

如何去求模型当中的参数β,使得损失最小?(目的是找到最小损失对应的参数值β)

  • 线性回归经常使用的两种优化算法
    • 正规方程
    • 梯度下降法

三、正规方程和梯度下降法

1.正规方程

正规方程(Normal Equation)是一种通过解析方法求解线性回归模型参数的方法。它是基于最小化平方损失函数的线性回归问题的闭式解。

  • 公式:

    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/279519
推荐阅读
相关标签