当前位置:   article > 正文

滑动验证码识别_金智维实现滑动验证码

金智维实现滑动验证码

滑动验证码

一、介绍

现在出现了一种通过用户鼠标移动滑块来填补有缺口图片的验证码,我们叫做滑动验证码。它的原理很简单,首先生成一张图片,然后随机挖去一块,在页面展示被挖去部分的图片,再通过js获取用户滑动距离,以及坐标等信息到后台进行校验。只要用户移动的距离符合,以及移动的轨迹行为检测通过即可视为验证通过。

解决思路

目前这种验证码的通用解决思路如下:

  1. 获取验证码图片,包含原图以及有缺口的图
  2. 算出缺口的位置,以及滑块要滑动的距离
  3. 通过算法模拟人工移动轨迹
  4. 通过selenium模拟操作

二、逻辑实现

我们以某一网址为例

1.获取验证码图片

注意我们需要获取两张图片,第一张是完整背景图,第二张是有缺口的背景图。

经过分析发现当鼠标位于按钮是上时显示完整背景图

1560509768898.png

当鼠标点击滑动按钮不松,显示有缺口的背景图。
在这里插入图片描述
根据之前学习的爬虫知识,图片一定是浏览器下载回来的,通过查看历史请求确实发现了图片。

在这里插入图片描述

但是图片有点奇怪,仔细查看发现图片是被分块并有意随机拼接的。根据以页面的css可以利用背景将图片拼接出来。我们当然可以依葫芦画瓢的利用PIL进行图片拼接,但是太麻烦了。

selenium有个方法可以对元素进行截图,先找到图片所在的html元素,然后利用selenium分别进行截图即可获取图片。代码如下:

完整图片
def get_full_image(driver):
    """
    鼠标移动到滑块,显示完整图案
    :param driver: webdriver
    :return: 返回验证码背景图片Image对象
    """

    webdriver.ActionChains(driver).move_to_element(slider).perform()
    time.sleep(0.2)
    img = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[1]/div[2]/div[1]/a[2]')
    if 'show' in img.get_attribute('class'):
        res = img.screenshot_as_png
        return Image.open(BytesIO(res))
    else:
        raise ValueError('获取验证码背景图片失败')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
有缺口的图片
def get_cut_image(driver):
    """
    点击滑动按钮获取有缺口图片
    :param driver: webdriver
    :return: 返回验证码有缺口图片的Image对象
    """

    slider = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]')
    webdriver.ActionChains(driver).click_and_hold(slider).perform()
    time.sleep(0.1)
    img = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[1]/div[2]/div[1]/a[1]')
    res = img.screenshot_as_png

    cut_img = Image.open(BytesIO(res))
    return Image.open(BytesIO(res))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

2.找出缺口位置,计算移动距离

算法有很多,大家可以自由发挥。这里我们讲一种最简单的方法。我们要算出的距离是滑块要滑动的距离。

[外链图片转存失败(img-8TSYCK65-1566993612012)(滑动验证.assets/1560510719212.png)]

通过比较没有缺口的图片,和这张有缺口的图片,找出滑块的位置和缺口的位置即可。经过观察,发现滑块出现的位置固定在x轴的0-100像素范围内,所以循环比较两张图片的x轴0-100像素范围内的每一行像素点,直到找到第一行出现两个图片像素点颜色完全不同的点,即找到了滑块的最左边最上的第一个像素点。但是在实际操作中发现,虽然肉眼看起来两张图片公共部分一模一样,但是程序处理后的像素的具体rgb值也是不相同的,所以需要设置一个阈值来判断,具体需要进行测试。

按照相同的思路,比较两张图片x轴100-end像素的部分,找到缺口的最左最上那个点。

用找到的缺口像素点的x坐标减去找到的滑块的点的x坐标得到近似移动距离。这种算法,经过测试准确率还不错,大家如果在实际工作过程中发现有问题,需要根据具体情况去设计不同算法。

代码如下:

def get_distance(full_image, cut_image):
    full_pixies = full_image.load()
    cut_pixies = cut_image.load()

    w, h = full_image.size

    full_image.save('full.png')
    cut_image.save('cut.png')

    # 先找最左边不同的点
    left = []

    for j in range(h):

        for i in range(100):

            if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs(
                    full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150:
                left.append((i, j))

        if left:
            break
    # 再找最右边不同的点
    right = []

    for j in range(h):

        for i in range(100, w):

            if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs(
                    full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150:
                right.append((i, j))

        if right:
            break

    length = right[0][0] - left[0][0]


    return length
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

3.计算滑动轨迹

滑动验证码早期刚面世的时候没有做行为校验,很快被破解。随着人工智能的发展,目前所有商用滑动验证码后台都有做行为校验,根据前端传递的移动轨迹,后台会进行特征校验,如果判定非人工则返回校验失败。模拟人的滑动行为,最常见的以中方法是通过加速度公式。目前这个方法已经被识别,但相对较简单,我们首先学习其思路。大家根据自己的能力可以自行扩展。

基本思路是,分析手动的移动轨迹后发现,是先加速后减速,所以通过加速度公式进行如下的设计:

    def get_track(self, distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+(1/2)at²
        ③v²-v0²=2as

        :param distance: 需要移动的距离
        :return: 存放每0.2秒移动的距离
        '''
        # 初速度
        v=0
        # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.3
        # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        # 当前的位移
        current=0
        # 到达mid值开始减速
        mid=distance * 5/8

        distance += 10  # 先滑过一点,最后再反着滑动回来
        # a = random.randint(1,3)
        while current < distance:
            if current < mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a = random.randint(1,3)  # 加速运动
            else:
                a = -random.randint(2,4) # 减速运动

            # 初速度
            v0 = v
            # 0.2秒时间内的位移
            s = v0*t+0.5*a*(t**2)
            # 当前的位置
            current += s
            # 添加到轨迹列表
            tracks.append(round(s))

            # 速度已经达到v,该速度作为下次的初速度
            v= v0+a*t

        # 反着滑动到大概准确位置
        for i in range(4):
           tracks.append(-random.randint(1,3))
        # for i in range(4):
        #    tracks.append(-random.randint(1,3))
        random.shuffle(tracks)
        return tracks
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

4.滑动滑块

利用selenium,根据算出的轨迹,进行模拟滑动

    def slide(self, tracks):

        # slider = self.driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]')
        # 鼠标点击并按住不松
        # webdriver.ActionChains(self.driver).click_and_hold(self.slider).perform()
        # 让鼠标随机往下移动一段距离
        webdriver.ActionChains(self.driver).move_by_offset(xoffset=0, yoffset=100).perform()
        time.sleep(0.15)
        for item in tracks:
            webdriver.ActionChains(self.driver).move_by_offset(xoffset=item, yoffset=random.randint(-2,2)).perform()
        # 稳定一秒再松开
        time.sleep(1)
        webdriver.ActionChains(self.driver).release(self.slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        webdriver.ActionChains(self.driver).move_by_offset(xoffset=random.randint(200, 300), yoffset=random.randint(200, 300)).perform()
        time.sleep(0.2)
        info = self.driver.find_element_by_xpath('//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[1]/div[2]/div[2]/div/div[2]/span[1]')
        if '验证通过' in info.text:
            return 1

        if '验证失败' in info.text:
            return 2

        if '再来一次' in info.text:
            return 3

        if '出现错误' in info.text:
            return 4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

5.完整代码

import time
import random
from io import BytesIO

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

from PIL import Image


class HuXiu:
    def __init__(self):
        self.driver = webdriver.Chrome()
        self.driver.maximize_window()
        self.slider = None
        self.load_captcha()

    def load_captcha(self):
        self.driver.get('https://www.huxiu.com/')
        self.driver.find_element_by_xpath('//*[@id="top"]/div/ul[2]/li[3]/a').click()
        time.sleep(0.5)
        try:
            self.slider = WebDriverWait(self.driver, 30).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[3]/div[2]')))
        except Exception:
            raise ValueError('加载验证码失败!')


    def get_full_image(self):
        """
        鼠标移动到滑块,显示完整图案
        :param driver: webdriver
        :return: 返回验证码背景图片Image对象
        """
        # slider = self.driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]')
        webdriver.ActionChains(self.driver).move_to_element(self.slider).perform()
        time.sleep(0.5)
        img = self.driver.find_element_by_xpath('//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[1]/div[2]/div[1]/a[2]/div[1]')
        if 'show' in img.get_attribute('class'):
            res = img.screenshot_as_png

            return Image.open(BytesIO(res))
        else:
            raise ValueError('获取验证码背景图片失败')

    def get_cut_image(self):
        """
            点击滑动按钮获取有缺口图片
            :param driver: webdriver
            :return: 返回验证码有缺口图片的Image对象
            """
        webdriver.ActionChains(self.driver).move_to_element_with_offset(self.slider, xoffset=5, yoffset=5).click_and_hold(self.slider).perform()
        # webdriver.ActionChains(self.driver).click_and_hold(self.slider).perform()
        time.sleep(0.1)
        img = self.driver.find_element_by_xpath('//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[1]/div[2]/div[1]/a[1]/div[1]')
        res = img.screenshot_as_png

        # cut_img = Image.open(BytesIO(res))
        return Image.open(BytesIO(res))

    def get_distance(self, full_image, cut_image):
        full_pixies = full_image.load()
        cut_pixies = cut_image.load()

        w, h = full_image.size

        # full_img.show()
        # cut_img.show()
        full_image.save('full.png')
        cut_image.save('cut.png')

        # 先找最左边不同的点
        left = []

        for j in range(h):

            for i in range(100):

                if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(
                        full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs(
                        full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150:
                    left.append((i, j))
                    # print(left)
                    # break
            if left:
                break

        right = []
        # 再找最右边不同的点
        for j in range(h):

            for i in range(100, w):

                if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(
                        full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs(
                        full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150:
                    right.append((i, j))
                    # print(right)
                    # break
            if right:
                break
        length = right[0][0] - left[0][0]
        return length

    def get_track(self, distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+(1/2)at²
        ③v²-v0²=2as

        :param distance: 需要移动的距离
        :return: 存放每0.2秒移动的距离
        '''
        # 初速度
        v=0
        # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.3
        # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        # 当前的位移
        current=0
        # 到达mid值开始减速
        mid=distance * 5/8

        distance += 10  # 先滑过一点,最后再反着滑动回来
        # a = random.randint(1,3)
        while current < distance:
            if current < mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a = random.randint(1,3)  # 加速运动
            else:
                a = -random.randint(2,4) # 减速运动

            # 初速度
            v0 = v
            # 0.2秒时间内的位移
            s = v0*t+0.5*a*(t**2)
            # 当前的位置
            current += s
            # 添加到轨迹列表
            tracks.append(round(s))

            # 速度已经达到v,该速度作为下次的初速度
            v= v0+a*t

        # 反着滑动到大概准确位置
        for i in range(4):
           tracks.append(-random.randint(1,3))
        # for i in range(4):
        #    tracks.append(-random.randint(1,3))
        random.shuffle(tracks)
        return tracks

    def captcha_check(self):

        full_image = self.get_full_image()
        time.sleep(1)
        cut_image = self.get_cut_image()
        distance = self.get_distance(full_image, cut_image)
        tracks = self.get_track(distance)
        return self.slide(tracks)

    def slide(self, tracks):

        # slider = self.driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]')
        # 鼠标点击并按住不松
        # webdriver.ActionChains(self.driver).click_and_hold(self.slider).perform()
        # 让鼠标随机往下移动一段距离
        webdriver.ActionChains(self.driver).move_by_offset(xoffset=0, yoffset=100).perform()
        time.sleep(0.15)
        for item in tracks:
            webdriver.ActionChains(self.driver).move_by_offset(xoffset=item, yoffset=random.randint(-2,2)).perform()
        # 稳定一秒再松开
        time.sleep(1)
        webdriver.ActionChains(self.driver).release(self.slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        webdriver.ActionChains(self.driver).move_by_offset(xoffset=random.randint(200, 300), yoffset=random.randint(200, 300)).perform()
        time.sleep(0.2)
        info = self.driver.find_element_by_xpath('//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[1]/div[2]/div[2]/div/div[2]/span[1]')
        if '验证通过' in info.text:
            return 1

        if '验证失败' in info.text:
            return 2

        if '再来一次' in info.text:
            return 3

        if '出现错误' in info.text:
            return 4


if __name__ == '__main__':
    hx = HuXiu()
    while True:
        res = hx.captcha_check()
        if res == 1:
            print('验证成功')
            break
        # elif res == 2:
        #     print('验证失败,5秒后重试')
        #     time.sleep(3)
        # elif res == 3:
        #     print('刷新验证码,10秒后重试')
        #     time.sleep(10)
        else:
            print('刷新页面重试')
            hx.load_captcha()
            time.sleep(5)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/287200
推荐阅读
相关标签
  

闽ICP备14008679号