赞
踩
每个步长共用参数
虽然 8.5节 对了解循环神经网络的实现方式具有指导意义,但并不方便。 本节将展示如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
高级API提供了循环神经网络的实现。 我们构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer。 事实上,我们还没有讨论多层循环神经网络的意义(这将在 9.3节中介绍)。 现在仅需要将多层理解为一层循环神经网络的输出被用作下一层循环神经网络的输入就足够了。
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
单隐藏层, 256个隐藏单元
隐藏层数(Number of Hidden Layers):
定义:隐藏层数指的是神经网络中介于输入层和输出层之间的层级数量。
作用:增加隐藏层数可以帮助神经网络学习更复杂的模式和特征,提高模型的表示能力。
影响:过多的隐藏层可能导致过拟合,而过少的隐藏层可能导致欠拟合。
选择:隐藏层数的选择通常需要根据具体问题的复杂度和数据集的特征来决定,可以通过交叉验证等方法来选择合适的层数。
隐藏单元数(Number of Hidden Units):
定义:隐藏单元数指的是每个隐藏层中包含的神经元数量。
作用:增加隐藏单元数可以增加神经网络的拟合能力,使其能够更好地学习数据的复杂关系。
影响:隐藏单元数的增加会增加模型的复杂度,可能导致过拟合;减少隐藏单元数可能导致模型欠拟合。
选择:隐藏单元数的选择通常需要在训练过程中进行调优,可以通过交叉验证或其他调参方法来确定合适的数量。
在实际应用中,选择合适的隐藏层数和隐藏单元数是一项重要的任务,需要根据具体问题的复杂度、数据集的特征以及计算资源等因素进行权衡和调整,以获得最佳的模型性能
state = torch.zeros((1, batch_size, num_hiddens))
state.shape
torch.Size([1, 32, 256])
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape
(torch.Size([35, 32, 256]), torch.Size([1, 32, 256]))
#@save class RNNModel(nn.Module): """循环神经网络模型""" def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.num_hiddens = self.rnn.hidden_size # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1 if not self.rnn.bidirectional: self.num_directions = 1 self.linear = nn.Linear(self.num_hiddens, self.vocab_size) else: self.num_directions = 2 self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size) def forward(self, inputs, state): X = F.one_hot(inputs.T.long(), self.vocab_size) X = X.to(torch.float32) Y, state = self.rnn(X, state) # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数) # 它的输出形状是(时间步数*批量大小,词表大小)。 output = self.linear(Y.reshape((-1, Y.shape[-1]))) # 输出层 return output, state def begin_state(self, device, batch_size=1): if not isinstance(self.rnn, nn.LSTM): # nn.GRU以张量作为隐状态 return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device) else: # nn.LSTM以元组作为隐状态 return (torch.zeros(( self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device), torch.zeros(( self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))
在训练模型之前,让我们基于一个具有随机权重的模型进行预测。
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
'time travellerbbabbkabyg'
很明显,这种模型根本不能输出好的结果。 接下来,我们使用 8.5节中 定义的超参数调用train_ch8,并且使用高级API训练模型。
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
perplexity 1.3, 404413.8 tokens/sec on cuda:0
time travellerit would be remarkably convenient for the historia
travellery of il the hise fupt might and st was it loflers
#@save def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): """训练模型(定义见第8章)""" loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) # 初始化 if isinstance(net, nn.Module): updater = torch.optim.SGD(net.parameters(), lr) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) # 训练和预测 for epoch in range(num_epochs): ppl, speed = train_epoch_ch8( net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: print(predict('time traveller')) animator.add(epoch + 1, [ppl]) print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}') print(predict('time traveller')) print(predict('traveller'))
#@save def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): """训练网络一个迭代周期(定义见第8章)""" state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) # 训练损失之和,词元数量 for X, Y in train_iter: if state is None or use_random_iter: # 在第一次迭代或使用随机抽样时初始化state state = net.begin_state(batch_size=X.shape[0], device=device) else: if isinstance(net, nn.Module) and not isinstance(state, tuple): # state对于nn.GRU是个张量 state.detach_() else: # state对于nn.LSTM或对于我们从零开始实现的模型是个张量 for s in state: s.detach_() y = Y.T.reshape(-1) X, y = X.to(device), y.to(device) y_hat, state = net(X, state) l = loss(y_hat, y.long()).mean() if isinstance(updater, torch.optim.Optimizer): updater.zero_grad() l.backward() grad_clipping(net, 1) updater.step() else: l.backward() grad_clipping(net, 1) # 因为已经调用了mean函数 updater(batch_size=1) metric.add(l * y.numel(), y.numel()) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
深度学习框架的高级API提供了循环神经网络层的实现。
高级API的循环神经网络层返回一个输出和一个更新后的隐状态,我们还需要计算整个模型的输出层。
相比从零开始实现的循环神经网络,使用高级API实现可以加速训练。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。