当前位置:   article > 正文

空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

空间金字塔池化代码pytorch

想直接看公式的可跳至第三节 3.公式修正

一、为什么需要SPP

首先需要知道为什么会需要SPP。

我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224)

固定输入数据大小有两个问题:

1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字。

54yix2cv7w.png ehbtv2bv3p.png


2.可能你会说可以对图片进行切割,但是切割的话很可能会丢失到重要信息。

综上,SPP的提出就是为了解决CNN输入图像大小必须固定的问题,从而可以使得输入图像高宽比和大小任意。

二、SPP原理

更加具体的原理可查阅原论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

jcvjgdr3n2.png



上图是原文中给出的示意图,需要从下往上看:

  • 首先是输入层(input image),其大小可以是任意的
  • 进行卷积运算,到最后一个卷积层(图中是conv5)输出得到该层的特征映射(feature maps),其大小也是任意的
  • 下面进入SPP层
    • 我们先看最左边有16个蓝色小格子的图,它的意思是将从conv5得到的特征映射分成16份
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/340572
推荐阅读
相关标签
  

闽ICP备14008679号