赞
踩
TTS是语音合成技术的简称,也称为文语转换或语音到文本。它是指将文本转换为语音信号,并通过语音合成器生成可听的语音。TTS技术可以用于多种应用,例如智能语音助手、语音邮件、语音新闻、有声读物等。
TTS技术通常包括以下步骤:
TTS的语音合成过程中常见的声学模型训练方法包括以下几种:
下面介绍一下拼接法:
参数合成技术是一种通过数学方法对已有录音进行频谱特性参数建模,构建文本序列映射到语音特征的映射关系,生成参数合成器的方法。当输入一个文本时,先将文本序列映射出对应的音频特征,再通过声学模型(声码器)将音频特征转化为我们听得懂的声音。参数合成技术具有录音量小、可多个音色共同训练、字间协同过渡平滑、自然等优点,但音质没有波形拼接的好,机械感强,有杂音等缺点。常见的参数合成技术包括基于统计参数合成技术和基于端到端语音合成技术。基于统计参数合成技术的方法包括隐马尔科夫模型(HMM)和声码器重构等。
深度学习端到端合成技术是指利用深度学习模型将文本直接转换为语音波形,不需要进行中间的语音参数提取,实现文本到语音的“端到端”合成。近年来基于神经网络架构的深度学习方法崛起,使得原本在传统专业领域门槛极高的TTS应用上更接地气。端到端合成系统相比于传统语音合成,降低了对语言学知识的要求,可以方便的在不同语种上复制,批量实现几十种甚至更多语种的合成系统。
端到端合成系统不需要考虑如何从语音的声学特征中恢复出原始的音频信号,而是直接将文本转换为音频信号,因此具有更高的效率和更好的音质。同时,端到端合成系统还可以直接使用原始文本作为输入,不需要进行文本分析等预处理操作,简化了系统的复杂度和处理流程。
目前,基于深度学习的端到端语音合成技术主要分为两类:统计参数合成(Statistical Parametric Speech Synthesis, SPSS)和神经网络声码器(Neural Vocoder)。其中,统计参数合成是一种基于统计模型的语音合成方法,通过建立文本特征到语音参数的映射关系来生成语音,而神经网络声码器则是一种基于深度神经网络的语音合成方法,通过训练神经网络模型将文本特征直接转换为语音波形。
TTS的效果评估可以从两个方面进行:主观评估和客观评估。
主观评估主要是通过人工听测的方式进行。具体来说,可以按照以下步骤进行:
客观评估则是通过仪器或软件进行测试,常用的方法包括但不限于以下两种:
TTS技术在人机交互中有着广泛的应用,以下是其中的几个具体示例:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。