赞
踩
(1)可以使用split()函数
import nltk
import numpy as np
import re
from nltk.corpus import stopwords
#1 分词1
text = "Sentiment analysis is a challenging subject in machine learning.\
People express their emotions in language that is often obscured by sarcasm,\
ambiguity, and plays on words, all of which could be very misleading for \
both humans and computers. There's another Kaggle competition for movie review \
sentiment analysis. In this tutorial we explore how Word2Vec can be applied to \
a similar problem.".lower()
text_list = re.sub("[^a-zA-Z]", " ", text).split()
(2)使用nltk.word_tokenize
text_list = nltk.word_tokenize(text)
#2 q去掉标点符号和停用词
#去掉标点符号
english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
text_list = [word for word in text_list if word not in english_punctuations]
#去掉停用词
stops = set(stopwords.words("english"))
text_list = [word for word in text_list if word not in stops]
freq_dist = nltk.FreqDist(text_list)
freq_list = []
num_words = len(freq_dist.values())
for i in range(num_words):
freq_list.append([list(freq_dist.keys())[i],list(freq_dist.values())[i]])
freqArr = np.array(freq_list)
In[33]: nltk.pos_tag(text_list) Out[33]: [('sentiment', 'NN'), ('analysis', 'NN'), ('challenging', 'VBG'), ('subject', 'JJ'), ('machine', 'NN'), ('learning', 'VBG'), ('people', 'NNS'), ('express', 'JJ'), ('emotions', 'NNS'), ('language', 'NN'), ('often', 'RB'), ('obscured', 'VBD'), ('sarcasm', 'JJ'), ('ambiguity', 'NN'), ('plays', 'NNS'), ('words', 'NNS'), ('could', 'MD'), ('misleading', 'VB'), ('humans', 'NNS'), ('computers', 'NNS'), ("'s", 'POS'), ('another', 'DT'), ('kaggle', 'NN'), ('competition', 'NN'), ('movie', 'NN'), ('review', 'NN'), ('sentiment', 'NN'), ('analysis', 'NN'), ('tutorial', 'JJ'), ('explore', 'NN'), ('word2vec', 'NN'), ('applied', 'VBD'), ('similar', 'JJ'), ('problem', 'NN')]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。