赞
踩
项目地址:文本情感分析 - 飞桨AI Studio星河社区 (baidu.com)
baidu/Senta: Baidu's open-source Sentiment Analysis System. (github.com)
本项目将详细全面介绍情感分析任务的两种子任务,句子级情感分析和目标级情感分析。
同时演示如何使用情感分析预训练模型SKEP完成以上两种任务,详细介绍预训练模型SKEP及其在 PaddleNLP 的使用方式。
本项目主要包括“任务介绍”、“情感分析预训练模型SKEP”、“句子级情感分析”、“目标级情感分析”等四个部分。
!pip install --upgrade paddlenlp -i https://pypi.org/simple
众所周知,人类自然语言中包含了丰富的情感色彩:表达人的情绪(如悲伤、快乐)、表达人的心情(如倦怠、忧郁)、表达人的喜好(如喜欢、讨厌)、表达人的个性特征和表达人的立场等等。情感分析在商品喜好、消费决策、舆情分析等场景中均有应用。利用机器自动分析这些情感倾向,不但有助于帮助企业了解消费者对其产品的感受,为产品改进提供依据;同时还有助于企业分析商业伙伴们的态度,以便更好地进行商业决策。
被人们所熟知的情感分析任务是将一段文本分类,如分为情感极性为正向、负向、其他的三分类问题:
实际上,以上熟悉的情感分析任务是句子级情感分析任务。
情感分析任务还可以进一步分为句子级情感分析、目标级情感分析等任务。在下面章节将会详细介绍两种任务及其应用场景。
近年来,大量的研究表明基于大型语料库的预训练模型(Pretrained Models, PTM)可以学习通用的语言表示,有利于下游NLP任务,同时能够避免从零开始训练模型。随着计算能力的发展,深度模型的出现(即 Transformer)和训练技巧的增强使得 PTM 不断发展,由浅变深。
情感预训练模型SKEP(Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis)。SKEP利用情感知识增强预训练模型, 在14项中英情感分析典型任务上全面超越SOTA,此工作已经被ACL 2020录用。SKEP是百度研究团队提出的基于情感知识增强的情感预训练算法,此算法采用无监督方法自动挖掘情感知识,然后利用情感知识构建预训练目标,从而让机器学会理解情感语义。SKEP为各类情感分析任务提供统一且强大的情感语义表示。
论文地址:[2005.05635] SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis (arxiv.org)
百度研究团队在三个典型情感分析任务,句子级情感分类(Sentence-level Sentiment Classification),评价目标级情感分类(Aspect-level Sentiment Classification)、观点抽取(Opinion Role Labeling),共计14个中英文数据上进一步验证了情感预训练模型SKEP的效果。
具体实验效果参考:baidu/Senta: Baidu's open-source Sentiment Analysis System. (github.com)
对给定的一段文本进行情感极性分类,常用于影评分析、网络论坛舆情分析等场景。如:
选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 1
15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 1
房间太小。其他的都一般... ... ... ... 0
其中1
表示正向情感,0
表示负向情感。
句子级情感分析任务
ChnSenticorp数据集是公开中文情感分析常用数据集, 其为2分类数据集。PaddleNLP已经内置该数据集,一键即可加载。
- from paddlenlp.datasets import load_dataset
-
- train_ds, dev_ds, test_ds = load_dataset("chnsenticorp", splits=["train", "dev", "test"])
-
- print(train_ds[0])
- print(train_ds[1])
- print(train_ds[2])
{'text': '选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般', 'label': 1, 'qid': ''}
{'text': '15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错', 'label': 1, 'qid': ''}
{'text': '房间太小。其他的都一般。。。。。。。。。', 'label': 0, 'qid': ''}
PaddleNLP已经实现了SKEP预训练模型,可以通过一行代码实现SKEP加载。
句子级情感分析模型是SKEP fine-tune 文本分类常用模型SkepForSequenceClassification
。其首先通过SKEP提取句子语义特征,之后将语义特征进行分类。
- from paddlenlp.transformers import SkepForSequenceClassification, SkepTokenizer
-
- # 指定模型名称,一键加载模型
- model = SkepForSequenceClassification.from_pretrained(pretrained_model_name_or_path="skep_ernie_1.0_large_ch", num_classes=len(train_ds.label_list))
- # 同样地,通过指定模型名称一键加载对应的Tokenizer,用于处理文本数据,如切分token,转token_id等。
- tokenizer = SkepTokenizer.from_pretrained(pretrained_model_name_or_path="skep_ernie_1.0_large_ch")
kepForSequenceClassification
可用于句子级情感分析和目标级情感分析任务。其通过预训练模型SKEP获取输入文本的表示,之后将文本表示进行分类。
pretrained_model_name_or_path
:模型名称。支持"skep_ernie_1.0_large_ch",“skep_ernie_2.0_large_en”。
num_classes
: 数据集分类类别数。
关于SKEP模型实现详细信息参考:PaddleNLP/paddlenlp/transformers/skep at develop · PaddlePaddle/PaddleNLP (github.com)
同样地,我们需要将原始ChnSentiCorp数据处理成模型可以读入的数据格式。
SKEP模型对中文文本处理按照字粒度进行处理,我们可以使用PaddleNLP内置的SkepTokenizer
完成一键式处理。
- import os
- from functools import partial
-
- import numpy as np
- import paddle
- import paddle.nn.functional as F
- from paddlenlp.data import Stack, Tuple, Pad
-
- from utils import create_dataloader
-
- def convert_example(example,
- tokenizer,
- max_seq_length=512,
- is_test=False):
- """
- Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
- by concatenating and adding special tokens. And creates a mask from the two sequences passed
- to be used in a sequence-pair classification task.
-
- A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence has the following format:
- ::
- - single sequence: ``[CLS] X [SEP]``
- - pair of sequences: ``[CLS] A [SEP] B [SEP]``
- A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence pair mask has the following format:
- ::
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- example(obj:`list[str]`): List of input data, containing text and label if it have label.
- tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer`
- which contains most of the methods. Users should refer to the superclass for more information regarding methods.
- max_seq_len(obj:`int`): The maximum total input sequence length after tokenization.
- Sequences longer than this will be truncated, sequences shorter will be padded.
- is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
- Returns:
- input_ids(obj:`list[int]`): The list of token ids.
- token_type_ids(obj: `list[int]`): List of sequence pair mask.
- label(obj:`int`, optional): The input label if not is_test.
- """
- # 将原数据处理成model可读入的格式,enocded_inputs是一个dict,包含input_ids、token_type_ids等字段
- encoded_inputs = tokenizer(
- text=example["text"], max_seq_len=max_seq_length)
-
- # input_ids:对文本切分token后,在词汇表中对应的token id
- input_ids = encoded_inputs["input_ids"]
- # token_type_ids:当前token属于句子1还是句子2,即上述图中表达的segment ids
- token_type_ids = encoded_inputs["token_type_ids"]
-
- if not is_test:
- # label:情感极性类别
- label = np.array([example["label"]], dtype="int64")
- return input_ids, token_type_ids, label
- else:
- # qid:每条数据的编号
- qid = np.array([example["qid"]], dtype="int64")
- return input_ids, token_type_ids, qid
- # 批量数据大小
- batch_size = 32
- # 文本序列最大长度
- max_seq_length = 128
-
- # 将数据处理成模型可读入的数据格式
- trans_func = partial(
- convert_example,
- tokenizer=tokenizer,
- max_seq_length=max_seq_length)
-
- # 将数据组成批量式数据,如
- # 将不同长度的文本序列padding到批量式数据中最大长度
- # 将每条数据label堆叠在一起
- batchify_fn = lambda samples, fn=Tuple(
- Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
- Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
- Stack() # labels
- ): [data for data in fn(samples)]
- train_data_loader = create_dataloader(
- train_ds,
- mode='train',
- batch_size=batch_size,
- batchify_fn=batchify_fn,
- trans_fn=trans_func)
- dev_data_loader = create_dataloader(
- dev_ds,
- mode='dev',
- batch_size=batch_size,
- batchify_fn=batchify_fn,
- trans_fn=trans_func)
定义损失函数、优化器以及评价指标后,即可开始训练。
推荐超参设置:
max_seq_length=256
batch_size=48
learning_rate=2e-5
epochs=10
实际运行时可以根据显存大小调整batch_size和max_seq_length大小。
utils.py文件如下(放在项目同级目录中)
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License"
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
-
-
- def create_dataloader(dataset,
- trans_fn=None,
- mode='train',
- batch_size=1,
- batchify_fn=None):
- """
- Creats dataloader.
- Args:
- dataset(obj:`paddle.io.Dataset`): Dataset instance.
- trans_fn(obj:`callable`, optional, defaults to `None`): function to convert a data sample to input ids, etc.
- mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
- batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
- batchify_fn(obj:`callable`, optional, defaults to `None`): function to generate mini-batch data by merging
- the sample list, None for only stack each fields of sample in axis
- 0(same as :attr::`np.stack(..., axis=0)`).
- Returns:
- dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
- """
- if trans_fn:
- dataset = dataset.map(trans_fn)
-
- shuffle = True if mode == 'train' else False
- if mode == "train":
- sampler = paddle.io.DistributedBatchSampler(
- dataset=dataset, batch_size=batch_size, shuffle=shuffle)
- else:
- sampler = paddle.io.BatchSampler(
- dataset=dataset, batch_size=batch_size, shuffle=shuffle)
- dataloader = paddle.io.DataLoader(
- dataset, batch_sampler=sampler, collate_fn=batchify_fn)
- return dataloader
-
-
- def convert_example(example, tokenizer, is_test=False):
- """
- Builds model inputs from a sequence for sequence classification tasks.
- It use `jieba.cut` to tokenize text.
- Args:
- example(obj:`list[str]`): List of input data, containing text and label if it have label.
- tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
- is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
- Returns:
- input_ids(obj:`list[int]`): The list of token ids.
- valid_length(obj:`int`): The input sequence valid length.
- label(obj:`numpy.array`, data type1 of int64, optional): The input label if not is_test.
- """
-
- input_ids = tokenizer.encode(example["text"])
- input_ids = np.array(input_ids, dtype='int64')
-
- if not is_test:
- label = np.array(example["label"], dtype="int64")
- return input_ids, label
- else:
- return input_ids
-
-
- @paddle.no_grad()
- def evaluate(model, criterion, metric, data_loader):
- """
- Given a dataset, it evals model and computes the metric.
- Args:
- model(obj:`paddle.nn.Layer`): A model to classify texts.
- criterion(obj:`paddle.nn.Layer`): It can compute the loss.
- metric(obj:`paddle.metric.Metric`): The evaluation metric.
- data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
- """
- model.eval()
- metric.reset()
- losses = []
- for batch in data_loader:
- input_ids, token_type_ids, labels = batch
- logits = model(input_ids, token_type_ids)
- loss = criterion(logits, labels)
- losses.append(loss.numpy())
- correct = metric.compute(logits, labels)
- metric.update(correct)
- accu = metric.accumulate()
- print("eval loss: %.5f, accu: %.5f" % (np.mean(losses), accu))
- model.train()
- metric.reset()
-
- import time
-
- from utils import evaluate
-
- # 训练轮次
- epochs = 1
- # 训练过程中保存模型参数的文件夹
- ckpt_dir = "skep_ckpt"
- # len(train_data_loader)一轮训练所需要的step数
- num_training_steps = len(train_data_loader) * epochs
-
- # Adam优化器
- optimizer = paddle.optimizer.AdamW(
- learning_rate=2e-5,
- parameters=model.parameters())
- # 交叉熵损失函数
- criterion = paddle.nn.loss.CrossEntropyLoss()
- # accuracy评价指标
- metric = paddle.metric.Accuracy()
- # 开启训练
- global_step = 0
- tic_train = time.time()
- for epoch in range(1, epochs + 1):
- for step, batch in enumerate(train_data_loader, start=1):
- input_ids, token_type_ids, labels = batch
- # 喂数据给model
- logits = model(input_ids, token_type_ids)
- # 计算损失函数值
- loss = criterion(logits, labels)
- # 预测分类概率值
- probs = F.softmax(logits, axis=1)
- # 计算acc
- correct = metric.compute(probs, labels)
- metric.update(correct)
- acc = metric.accumulate()
-
- global_step += 1
- if global_step % 10 == 0:
- print(
- "global step %d, epoch: %d, batch: %d, loss: %.5f, accu: %.5f, speed: %.2f step/s"
- % (global_step, epoch, step, loss, acc,
- 10 / (time.time() - tic_train)))
- tic_train = time.time()
-
- # 反向梯度回传,更新参数
- loss.backward()
- optimizer.step()
- optimizer.clear_grad()
-
- if global_step % 100 == 0:
- save_dir = os.path.join(ckpt_dir, "model_%d" % global_step)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- # 评估当前训练的模型
- evaluate(model, criterion, metric, dev_data_loader)
- # 保存当前模型参数等
- model.save_pretrained(save_dir)
- # 保存tokenizer的词表等
- tokenizer.save_pretrained(save_dir)
global step 10, epoch: 1, batch: 10, loss: 0.53868, accu: 0.66250, speed: 1.45 step/s
global step 20, epoch: 1, batch: 20, loss: 0.38239, accu: 0.76562, speed: 1.40 step/s
global step 30, epoch: 1, batch: 30, loss: 0.14145, accu: 0.81667, speed: 1.39 step/s
global step 40, epoch: 1, batch: 40, loss: 0.19523, accu: 0.84219, speed: 1.40 step/s
global step 50, epoch: 1, batch: 50, loss: 0.17806, accu: 0.85688, speed: 1.40 step/s
global step 60, epoch: 1, batch: 60, loss: 0.34572, accu: 0.86771, speed: 1.40 step/s
global step 70, epoch: 1, batch: 70, loss: 0.28901, accu: 0.87634, speed: 1.40 step/s
global step 80, epoch: 1, batch: 80, loss: 0.30491, accu: 0.87891, speed: 1.40 step/s
global step 90, epoch: 1, batch: 90, loss: 0.21844, accu: 0.88403, speed: 1.40 step/s
global step 100, epoch: 1, batch: 100, loss: 0.08482, accu: 0.88687, speed: 1.40 step/s
eval loss: 0.24119, accu: 0.91083
global step 110, epoch: 1, batch: 110, loss: 0.23338, accu: 0.89375, speed: 0.49 step/s
global step 120, epoch: 1, batch: 120, loss: 0.11810, accu: 0.89375, speed: 1.40 step/s
global step 130, epoch: 1, batch: 130, loss: 0.15867, accu: 0.90208, speed: 1.40 step/s
global step 140, epoch: 1, batch: 140, loss: 0.09246, accu: 0.90391, speed: 1.40 step/s
global step 150, epoch: 1, batch: 150, loss: 0.17813, accu: 0.90750, speed: 1.40 step/s
global step 160, epoch: 1, batch: 160, loss: 0.30430, accu: 0.90885, speed: 1.41 step/s
global step 170, epoch: 1, batch: 170, loss: 0.09656, accu: 0.90893, speed: 1.40 step/s
global step 180, epoch: 1, batch: 180, loss: 0.03513, accu: 0.91016, speed: 1.40 step/s
global step 190, epoch: 1, batch: 190, loss: 0.21260, accu: 0.90938, speed: 1.40 step/s
global step 200, epoch: 1, batch: 200, loss: 0.43565, accu: 0.90906, speed: 1.40 step/s
eval loss: 0.20330, accu: 0.93083
global step 210, epoch: 1, batch: 210, loss: 0.25406, accu: 0.93750, speed: 0.49 step/s
global step 220, epoch: 1, batch: 220, loss: 0.24473, accu: 0.93750, speed: 1.39 step/s
global step 230, epoch: 1, batch: 230, loss: 0.30164, accu: 0.94271, speed: 1.40 step/s
global step 240, epoch: 1, batch: 240, loss: 0.30389, accu: 0.93516, speed: 1.39 step/s
global step 250, epoch: 1, batch: 250, loss: 0.26582, accu: 0.93063, speed: 1.40 step/s
global step 260, epoch: 1, batch: 260, loss: 0.17866, accu: 0.93073, speed: 1.40 step/s
global step 270, epoch: 1, batch: 270, loss: 0.11397, accu: 0.93304, speed: 1.40 step/s
global step 280, epoch: 1, batch: 280, loss: 0.13630, accu: 0.93281, speed: 1.40 step/s
global step 290, epoch: 1, batch: 290, loss: 0.13803, accu: 0.93229, speed: 1.40 step/s
global step 300, epoch: 1, batch: 300, loss: 0.06872, accu: 0.93312, speed: 1.43 step/s
eval loss: 0.17526, accu: 0.94083
使用训练得到的模型还可以对文本进行情感预测。
- import numpy as np
- import paddle
-
- # 处理测试集数据
- trans_func = partial(
- convert_example,
- tokenizer=tokenizer,
- max_seq_length=max_seq_length,
- is_test=True)
- batchify_fn = lambda samples, fn=Tuple(
- Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
- Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment
- Stack() # qid
- ): [data for data in fn(samples)]
- test_data_loader = create_dataloader(
- test_ds,
- mode='test',
- batch_size=batch_size,
- batchify_fn=batchify_fn,
- trans_fn=trans_func)
- # 根据实际运行情况,更换加载的参数路径
- params_path = 'skep_ckp/model_500/model_state.pdparams'
- if params_path and os.path.isfile(params_path):
- # 加载模型参数
- state_dict = paddle.load(params_path)
- model.set_dict(state_dict)
- print("Loaded parameters from %s" % params_path)
- label_map = {0: '0', 1: '1'}
- results = []
- # 切换model模型为评估模式,关闭dropout等随机因素
- model.eval()
- for batch in test_data_loader:
- input_ids, token_type_ids, qids = batch
- # 喂数据给模型
- logits = model(input_ids, token_type_ids)
- # 预测分类
- probs = F.softmax(logits, axis=-1)
- idx = paddle.argmax(probs, axis=1).numpy()
- idx = idx.tolist()
- labels = [label_map[i] for i in idx]
- qids = qids.numpy().tolist()
- results.extend(zip(qids, labels))
- res_dir = "./results"
- if not os.path.exists(res_dir):
- os.makedirs(res_dir)
- # 写入预测结果
- with open(os.path.join(res_dir, "ChnSentiCorp.tsv"), 'w', encoding="utf8") as f:
- f.write("index\tprediction\n")
- for qid, label in results:
- f.write(str(qid[0])+"\t"+label+"\n")
在电商产品分析场景下,除了分析整体商品的情感极性外,还细化到以商品具体的“方面”为分析主体进行情感分析(aspect-level),如下、:
关于薯片的口味方面是一个负向评价(咸,太辣),然而对于口感方面却是一个正向评价(很脆)。
关于夏威夷是一个正向评价(喜欢),然而对于夏威夷的海鲜却是一个负向评价(价格太贵)。
目标级情感分析任务
千言数据集已提供了许多任务常用数据集。
其中情感分析数据集下载链接:千言数据集:情感分析_千言数据集评测-飞桨AI Studio星河社区 (baidu.com)
SE-ABSA16_PHNS数据集是关于手机的目标级情感分析数据集。PaddleNLP已经内置了该数据集,加载方式,如下:
- train_ds, test_ds = load_dataset("seabsa16", "phns", splits=["train", "test"])
-
- print(train_ds[0])
- print(train_ds[1])
- print(train_ds[2])
目标级情感分析模型同样使用SkepForSequenceClassification
模型,但目标级情感分析模型的输入不单单是一个句子,而是句对。一个句子描述“评价对象方面(aspect)”,另一个句子描述"对该方面的评论"。如下图所示。
- # 指定模型名称一键加载模型
- model = SkepForSequenceClassification.from_pretrained(
- 'skep_ernie_1.0_large_ch', num_classes=len(train_ds.label_list))
- # 指定模型名称一键加载tokenizer
- tokenizer = SkepTokenizer.from_pretrained('skep_ernie_1.0_large_ch')
同样地,我们需要将原始SE_ABSA16_PHNS数据处理成模型可以读入的数据格式。
SKEP模型对中文文本处理按照字粒度进行处理,我们可以使用PaddleNLP内置的SkepTokenizer
完成一键式处理。
- from functools import partial
- import os
- import time
-
- import numpy as np
- import paddle
- import paddle.nn.functional as F
- from paddlenlp.data import Stack, Tuple, Pad
-
-
- def convert_example(example,
- tokenizer,
- max_seq_length=512,
- is_test=False,
- dataset_name="chnsenticorp"):
- """
- Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
- by concatenating and adding special tokens. And creates a mask from the two sequences passed
- to be used in a sequence-pair classification task.
-
- A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence has the following format:
- ::
- - single sequence: ``[CLS] X [SEP]``
- - pair of sequences: ``[CLS] A [SEP] B [SEP]``
- A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence pair mask has the following format:
- ::
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
-
- note: There is no need token type ids for skep_roberta_large_ch model.
- Args:
- example(obj:`list[str]`): List of input data, containing text and label if it have label.
- tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer`
- which contains most of the methods. Users should refer to the superclass for more information regarding methods.
- max_seq_len(obj:`int`): The maximum total input sequence length after tokenization.
- Sequences longer than this will be truncated, sequences shorter will be padded.
- is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
- dataset_name((obj:`str`, defaults to "chnsenticorp"): The dataset name, "chnsenticorp" or "sst-2".
- Returns:
- input_ids(obj:`list[int]`): The list of token ids.
- token_type_ids(obj: `list[int]`): List of sequence pair mask.
- label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
- """
- encoded_inputs = tokenizer(
- text=example["text"],
- text_pair=example["text_pair"],
- max_seq_len=max_seq_length)
-
- input_ids = encoded_inputs["input_ids"]
- token_type_ids = encoded_inputs["token_type_ids"]
-
- if not is_test:
- label = np.array([example["label"]], dtype="int64")
- return input_ids, token_type_ids, label
- else:
- return input_ids, token_type_ids
- # 处理的最大文本序列长度
- max_seq_length=256
- # 批量数据大小
- batch_size=16
-
- # 将数据处理成model可读入的数据格式
- trans_func = partial(
- convert_example,
- tokenizer=tokenizer,
- max_seq_length=max_seq_length)
- # 将数据组成批量式数据,如
- # 将不同长度的文本序列padding到批量式数据中最大长度
- # 将每条数据label堆叠在一起
- batchify_fn = lambda samples, fn=Tuple(
- Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
- Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
- Stack(dtype="int64") # labels
- ): [data for data in fn(samples)]
- train_data_loader = create_dataloader(
- train_ds,
- mode='train',
- batch_size=batch_size,
- batchify_fn=batchify_fn,
- trans_fn=trans_func)
定义损失函数、优化器以及评价指标后,即可开始训练。
- # 训练轮次
- epochs = 3
- # 总共需要训练的step数
- num_training_steps = len(train_data_loader) * epochs
- # 优化器
- optimizer = paddle.optimizer.AdamW(
- learning_rate=5e-5,
- parameters=model.parameters())
- # 交叉熵损失
- criterion = paddle.nn.loss.CrossEntropyLoss()
- # Accuracy评价指标
- metric = paddle.metric.Accuracy()
- # 开启训练
- ckpt_dir = "skep_aspect"
- global_step = 0
- tic_train = time.time()
- for epoch in range(1, epochs + 1):
- for step, batch in enumerate(train_data_loader, start=1):
- input_ids, token_type_ids, labels = batch
- # 喂数据给model
- logits = model(input_ids, token_type_ids)
- # 计算损失函数值
- loss = criterion(logits, labels)
- # 预测分类概率
- probs = F.softmax(logits, axis=1)
- # 计算acc
- correct = metric.compute(probs, labels)
- metric.update(correct)
- acc = metric.accumulate()
-
- global_step += 1
- if global_step % 10 == 0:
- print(
- "global step %d, epoch: %d, batch: %d, loss: %.5f, acc: %.5f, speed: %.2f step/s"
- % (global_step, epoch, step, loss, acc,
- 10 / (time.time() - tic_train)))
- tic_train = time.time()
-
- # 反向梯度回传,更新参数
- loss.backward()
- optimizer.step()
- optimizer.clear_grad()
-
- if global_step % 100 == 0:
-
- save_dir = os.path.join(ckpt_dir, "model_%d" % global_step)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- # 保存模型参数
- model.save_pretrained(save_dir)
- # 保存tokenizer的词表等
- tokenizer.save_pretrained(save_dir)
global step 10, epoch: 1, batch: 10, loss: 0.65064, acc: 0.53125, speed: 1.27 step/s
global step 20, epoch: 1, batch: 20, loss: 0.52287, acc: 0.55312, speed: 1.26 step/s
global step 30, epoch: 1, batch: 30, loss: 0.71099, acc: 0.57083, speed: 1.27 step/s
global step 40, epoch: 1, batch: 40, loss: 0.70976, acc: 0.59062, speed: 1.27 step/s
global step 50, epoch: 1, batch: 50, loss: 0.62593, acc: 0.59000, speed: 1.26 step/s
global step 60, epoch: 1, batch: 60, loss: 0.70332, acc: 0.58542, speed: 1.26 step/s
global step 70, epoch: 1, batch: 70, loss: 0.52017, acc: 0.59911, speed: 1.25 step/s
global step 80, epoch: 1, batch: 80, loss: 0.64913, acc: 0.60781, speed: 1.27 step/s
global step 90, epoch: 2, batch: 6, loss: 0.56703, acc: 0.60824, speed: 1.30 step/s
global step 100, epoch: 2, batch: 16, loss: 0.59230, acc: 0.61746, speed: 1.26 step/s
global step 110, epoch: 2, batch: 26, loss: 0.74638, acc: 0.61473, speed: 0.84 step/s
global step 120, epoch: 2, batch: 36, loss: 0.67488, acc: 0.62134, speed: 1.25 step/s
global step 130, epoch: 2, batch: 46, loss: 0.60215, acc: 0.62307, speed: 1.27 step/s
global step 140, epoch: 2, batch: 56, loss: 0.47045, acc: 0.63172, speed: 1.26 step/s
global step 150, epoch: 2, batch: 66, loss: 0.53512, acc: 0.63253, speed: 1.27 step/s
global step 160, epoch: 2, batch: 76, loss: 0.59317, acc: 0.63597, speed: 1.26 step/s
global step 170, epoch: 3, batch: 2, loss: 0.50540, acc: 0.63794, speed: 1.31 step/s
global step 180, epoch: 3, batch: 12, loss: 0.69784, acc: 0.63827, speed: 1.25 step/s
global step 190, epoch: 3, batch: 22, loss: 0.57723, acc: 0.64451, speed: 1.26 step/s
global step 200, epoch: 3, batch: 32, loss: 0.53240, acc: 0.64667, speed: 1.26 step/s
global step 210, epoch: 3, batch: 42, loss: 0.87506, acc: 0.64713, speed: 0.86 step/s
global step 220, epoch: 3, batch: 52, loss: 0.60447, acc: 0.64755, speed: 1.26 step/s
global step 230, epoch: 3, batch: 62, loss: 0.51687, acc: 0.64793, speed: 1.26 step/s
global step 240, epoch: 3, batch: 72, loss: 0.57719, acc: 0.65272, speed: 1.25 step/s
global step 250, epoch: 3, batch: 82, loss: 0.43986, acc: 0.65487, speed: 1.29 step/s
使用训练得到的模型还可以对评价对象进行情感预测。
- @paddle.no_grad()
- def predict(model, data_loader, label_map):
- """
- Given a prediction dataset, it gives the prediction results.
- Args:
- model(obj:`paddle.nn.Layer`): A model to classify texts.
- data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
- label_map(obj:`dict`): The label id (key) to label str (value) map.
- """
- model.eval()
- results = []
- for batch in data_loader:
- input_ids, token_type_ids = batch
- logits = model(input_ids, token_type_ids)
- probs = F.softmax(logits, axis=1)
- idx = paddle.argmax(probs, axis=1).numpy()
- idx = idx.tolist()
- labels = [label_map[i] for i in idx]
- results.extend(labels)
- return results
- # 处理测试集数据
- label_map = {0: '0', 1: '1'}
- trans_func = partial(
- convert_example,
- tokenizer=tokenizer,
- max_seq_length=max_seq_length,
- is_test=True)
- batchify_fn = lambda samples, fn=Tuple(
- Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
- Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
- ): [data for data in fn(samples)]
- test_data_loader = create_dataloader(
- test_ds,
- mode='test',
- batch_size=batch_size,
- batchify_fn=batchify_fn,
- trans_fn=trans_func)
- # 根据实际运行情况,更换加载的参数路径
- params_path = 'skep_ckpt/model_900/model_state.pdparams'
- if params_path and os.path.isfile(params_path):
- # 加载模型参数
- state_dict = paddle.load(params_path)
- model.set_dict(state_dict)
- print("Loaded parameters from %s" % params_path)
-
- results = predict(model, test_data_loader, label_map)
- # 写入预测结果
- with open(os.path.join("results", "SE-ABSA16_PHNS.tsv"), 'w', encoding="utf8") as f:
- f.write("index\tprediction\n")
- for idx, label in enumerate(results):
- f.write(str(idx)+"\t"+label+"\n")
- #将预测文件结果压缩至zip文件,提交
- !zip -r results.zip results
updating: results/ (stored 0%)
updating: results/ChnSentiCorp.tsv (deflated 63%)
updating: results/SE-ABSA16_PHNS.tsv (deflated 64%)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。