赞
踩
{/strong>在生成一个基于python的应用程序后,需要一个经过训练的应用程序生成的图形。
为此,我查看了下面的example。但是我不明白的是如何收集我的输出。我知道我需要为图形提供3个输入。在
从官方教程中给出的示例中,我阅读了基于python的代码。在def run_graph(wav_data, labels, input_layer_name, output_layer_name,
num_top_predictions):
"""Runs the audio data through the graph and prints predictions."""
with tf.Session() as sess:
# Feed the audio data as input to the graph.
# predictions will contain a two-dimensional array, where one
# dimension represents the input image count, and the other has
# predictions per class
softmax_tensor = sess.graph.get_tensor_by_name(output_layer_name)
predictions, = sess.run(softmax_tensor, {input_layer_name: wav_data})
# Sort to show labels in order of confidence
top_k = predictions.argsort()[-num_top_predictions:][::-1]
for node_id in top_k:
human_string = labels[node_id]
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
return 0
有人能帮我理解TensorFlowJavaAPI吗?在
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。