赞
踩
SCConv是一种即插即用的空间和通道重建卷积。
RepNCSPELAN4是YOLOv9中的特征提取模块,类似YOLOv5和v8中的C2f与C3模块。
RepNCSPELAN4_SCConv的主要思想: 使用SCConv替换RepNCSPELAN4中的Conv模块。
- class RepNBottleneck_SC(RepNBottleneck):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
- super().__init__( c1, c2, shortcut, g, k, e)
- c_ = int(c2 * e) # hidden channels
- self.cv1 = RepConvN(c1, c_, k[0], 1)
- self.cv2 = SCConv(c_, c2, s=1, g=g)
- self.add = shortcut and c1 == c2
-
-
- class RepNCSP_SCConv(RepNCSP):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_)
- self.cv2 = SCConv(c1, c_)
- self.cv3 = Conv(2 * c_, c2) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(RepNBottleneck_SC(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
-
- class RepNCSPELAN4SCConv(RepNCSPELAN4):
- # csp-elan
- def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__(c1, c2, c3, c4, c5)
- self.cv1 = Conv(c1, c3, k=1, s=1)
- self.cv2 = nn.Sequential(RepNCSP_SCConv(c3 // 2, c4, c5), SCConv(c4, c4))
- self.cv3 = nn.Sequential(RepNCSP_SCConv(c4, c4, c5), SCConv(c4, c4))
- self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
-
- class SCConv(nn.Module):
- """https://github.com/MCG-NKU/SCNet/blob/master/scnet.py"""
- def __init__(self, inplanes, planes,k=3, s=1, p=1, dilation=1, g=1, pooling_r=4):
- super(SCConv, self).__init__()
- self.k2 = nn.Sequential(
- nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),
- Conv(inplanes, planes, k=k, s=s, p=p, d=dilation, g=g, act=False))
- self.k3 = Conv(inplanes, planes, k=k, s=s, p=p, d=dilation, g=g, act=False)
-
- self.k4 = Conv(inplanes, planes, k=k, s=s, p=p, d=dilation, g=g, act=False)
-
- def forward(self, x):
- identity = x
-
- out = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)
- out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)
- out = self.k4(out) # k4
-
- return out
阅读YOLOv9添加模块教程或使用下文操作
1. 将YOLOv9工程中models下common.py文件中的最下行(否则可能因类继承报错)增加模块的代码。
2. 将YOLOv9工程中models下yolo.py文件中的第681行(可能因版本变化而变化)增加以下代码。
RepNCSPELAN4, SPPELAN, RepNCSPELAN4SCConv1}:
- # YOLOv9
- # Powered bu https://blog.csdn.net/StopAndGoyyy
-
- # parameters
- nc: 80 # number of classes
- #depth_multiple: 0.33 # model depth multiple
- depth_multiple: 1 # model depth multiple
- #width_multiple: 0.25 # layer channel multiple
- width_multiple: 1 # layer channel multiple
- #activation: nn.LeakyReLU(0.1)
- #activation: nn.ReLU()
-
- # anchors
- anchors: 3
-
- # YOLOv9 backbone
- backbone:
- [
- [-1, 1, Silence, []],
-
- # conv down
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
-
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
-
- # elan-1 block
- [-1, 1, RepNCSPELAN4SCConv1, [256, 128, 64, 1]], # 3
-
- # avg-conv down
- [-1, 1, ADown, [256]], # 4-P3/8
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
-
- # avg-conv down
- [-1, 1, ADown, [512]], # 6-P4/16
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
-
- # avg-conv down
- [-1, 1, ADown, [512]], # 8-P5/32
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
- ]
-
- # YOLOv9 head
- head:
- [
- # elan-spp block
- [-1, 1, SPPELAN, [512, 256]], # 10
-
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 7], 1, Concat, [1]], # cat backbone P4
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
-
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 5], 1, Concat, [1]], # cat backbone P3
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
-
- # avg-conv-down merge
- [-1, 1, ADown, [256]],
- [[-1, 13], 1, Concat, [1]], # cat head P4
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
-
- # avg-conv-down merge
- [-1, 1, ADown, [512]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
-
-
- # multi-level reversible auxiliary branch
-
- # routing
- [5, 1, CBLinear, [[256]]], # 23
- [7, 1, CBLinear, [[256, 512]]], # 24
- [9, 1, CBLinear, [[256, 512, 512]]], # 25
-
- # conv down
- [0, 1, Conv, [64, 3, 2]], # 26-P1/2
-
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
-
- # elan-1 block
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
-
- # avg-conv down fuse
- [-1, 1, ADown, [256]], # 29-P3/8
- [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
-
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 32-P4/16
- [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
-
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 35-P5/32
- [[25, -1], 1, CBFuse, [[2]]], # 36
-
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
-
-
-
- # detection head
-
- # detect
- [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
- ]
欢迎关注!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。