赞
踩
针对目前睡眠分期存在的依赖人工特征提取、无法识别长时关联数据中的时序模式、模型时序数据分期不准确等问题,提出一种CNN-BiLSTM(卷积双向长短期记忆神经网络)多特征分类预测方法。
inputSize = [1250 12 1]; numHiddenUnits = 10; layers = [ ... sequenceInputLayer(inputSize,'Name','input','normalization','none') sequenceFoldingLayer('Name','fold') convolution2dLayer([21 1],16,'Name','conv1','Padding','same') maxPooling2dLayer([7 1],'Stride',7,'Name','maxpool1','Padding','same') convolution2dLayer([17 1],32,'Name','conv2','Padding','same') maxPooling2dLayer([6 1],'Stride',6,'Name','maxpool2','Padding','same') convolution2dLayer([13 1],64,'Name','conv3','Padding','same') maxPooling2dLayer([7 1],'Stride',7,'Name','maxpool3','Padding','same') sequenceUnfoldingLayer('Name','unfold') flattenLayer('Name','flatten') bilstmLayer(numHiddenUnits,'OutputMode','last','Name','bilstm1') fullyConnectedLayer(numClasses, 'Name','fc') softmaxLayer('Name','softmax') classificationLayer('Name','classification')];
提出的CNN-BiLSTM(卷积双向长短期记忆神经网络)多特征分类预测法提高了现有方法的准确率,但仍有许多工作需要进一步完善.下一步将引入其他指标分析,可能能够找到更好的分类方法.
[1] https://blog.csdn.net/kjm13182345320/article/details/126845650?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/126775607?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/126744720?spm=1001.2014.3001.5501
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。