赞
踩
本文基于elasticsearch7.3.0版本
官方文档:日期数据类型
在elasticsearch内部,日期被转换为UTC(如果指定了时区),并存储为一个自1997-01-01 00:00:00(GMT)至当前时刻所经过的毫秒数
对日期的查询在内部转换为这种毫秒数表示形式上的范围查询
聚合和存储字段的结果将根据与字段关联的日期格式转换回字符串(聚合和存储字段的日期将始终以字符串形式呈现,即使最初在JSON文档中作为Long提供日期也是如此)
默认使用
"strict_date_optional_time||epoch_millis"
# 创建索引 PUT my_date { "mappings": { "properties": { "publicDate":{ "type": "date", // 不管publicDate是什么格式, 存储字段始终是字符串形式, 默认格式为yyyy-MM-dd'T'HH:mm:ss.SSSZ "store": true }, "tag":{ "type": "keyword", "store": true } } } } # 索引文档 POST my_date/_doc/1 { "publicDate":"1576022400000", "tag":"0时区:2019-12-11T00:00:00.000Z" } POST my_date/_doc/2 { "publicDate":"1576051200000", "tag":"0时区:2019-12-11T08:00:00.000Z" } POST my_date/_doc/3 { "publicDate":"2019-12-11T08:00:00", "tag":"0时区:2019-12-11T08:00:00.000Z" } POST my_date/_doc/4 { "publicDate":"2019-12-11T08:00:00+08:00", "tag":"0时区:2019-12-11T00:00:00.000Z" }
从_source获取存储的文档, 不做任何处理,原样返回
# 查询 GET my_date/_search { "query": { "match_all": {} } } # 结果 { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 4, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "publicDate" : "1576022400000", "tag" : "0时区:2019-12-11T00:00:00.000Z" } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "_source" : { "publicDate" : "1576051200000", "tag" : "0时区:2019-12-11T08:00:00.000Z" } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11T08:00:00", "tag" : "0时区:2019-12-11T08:00:00.000Z" } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "4", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11T08:00:00+08:00", "tag" : "0时区:2019-12-11T00:00:00.000Z" } } ] } }
从存储字段获取文档, 日期会被格式成字符串形式
# 查询 GET my_date/_search { "stored_fields": ["publicDate", "tag"], "query": { "match_all": {} } } # 结果 { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 4, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11T00:00:00.000Z" ], "tag" : [ "0时区:2019-12-11T00:00:00.000Z" ] } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11T08:00:00.000Z" ], "tag" : [ "0时区:2019-12-11T08:00:00.000Z" ] } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11T08:00:00.000Z" ], "tag" : [ "0时区:2019-12-11T08:00:00.000Z" ] } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "4", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11T00:00:00.000Z" ], "tag" : [ "0时区:2019-12-11T00:00:00.000Z" ] } } ] } }
聚合文档, 日期会被格式成字符串形式
# 聚合 GET my_date/_search { "size": 0, "aggs": { "date_aggs": { "date_histogram": { "field": "publicDate", "calendar_interval": "1h", // >=1数量的桶才会被展示, 默认是0, 即都展示 "min_doc_count": 1 }, "aggs":{ "top_aggs":{ // 展示每个桶的前10个 "top_hits": { "size": 10 } } } } } } # 结果 { "took" : 12, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 4, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "date_aggs" : { "buckets" : [ { "key_as_string" : "2019-12-11T00:00:00.000Z", "key" : 1576022400000, "doc_count" : 2, "top_aggs" : { "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "publicDate" : "1576022400000", "tag" : "0时区:2019-12-11T00:00:00.000Z" } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "4", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11T08:00:00+08:00", "tag" : "0时区:2019-12-11T00:00:00.000Z" } } ] } } }, { "key_as_string" : "2019-12-11T08:00:00.000Z", "key" : 1576051200000, "doc_count" : 2, "top_aggs" : { "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "_source" : { "publicDate" : "1576051200000", "tag" : "0时区:2019-12-11T08:00:00.000Z" } }, { "_index" : "my_date", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11T08:00:00", "tag" : "0时区:2019-12-11T08:00:00.000Z" } } ] } } } ] } } }
elasticsearch支持自定义日期格式
多种格式可以通过 || 间隔。在找到匹配的格式之前,将依次尝试每种格式。
第一种格式将用于格式化毫秒值为字符串(聚合和存储字段)
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
# 创建索引 PUT my_date1 { "mappings": { "properties": { "publicDate": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis", // 不管publicDate是什么格式, 存储字段始终是字符串形式, 默认格式为第一种格式, 这里为yyyy-MM-ddHH:mm:ss // 同理, 如果yyyy-MM-dd在第一个, 那么格式化字符串形式就是yyyy-MM-dd "store": true } } } } # 索引文档 POST my_date1/_doc/1 { "publicDate":"1576051200000" } POST my_date1/_doc/2 { "publicDate":"2019-12-11 08:00:00" } POST my_date1/_doc/3 { "publicDate":"2019-12-11" }
从_source获取存储的文档, 不做任何处理,原样返回
# 查询 GET my_date1/_search { "query": { "match_all": {} } } # 结果 { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date1", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "publicDate" : "1576051200000" } }, { "_index" : "my_date1", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11 08:00:00" } }, { "_index" : "my_date1", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "_source" : { "publicDate" : "2019-12-11" } } ] } }
从存储字段获取文档, 日期会被格式成字符串形式, 第一个格式为yyyy-MM-dd HH:mm:ss
# 查询 GET my_date1/_search { "stored_fields": ["publicDate"], "query": { "match_all": {} } } # 结果 { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_date1", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11 08:00:00" ] } }, { "_index" : "my_date1", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11 08:00:00" ] } }, { "_index" : "my_date1", "_type" : "_doc", "_id" : "3", "_score" : 1.0, "fields" : { "publicDate" : [ "2019-12-11 00:00:00" ] } } ] } }
聚合文档, 日期会被格式成字符串形式, 第一个格式为yyyy-MM-dd HH:mm:ss
# 聚合 GET my_date1/_search { "size": 0, "aggs": { "date_aggs": { "date_histogram": { "field": "publicDate", "calendar_interval": "1h", // >=1数量的桶才会被展示, 默认是0, 即都展示 "min_doc_count":1 } } } } # 结果 { "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "date_aggs" : { "buckets" : [ { "key_as_string" : "2019-12-11 00:00:00", "key" : 1576022400000, "doc_count" : 1 }, { "key_as_string" : "2019-12-11 08:00:00", "key" : 1576051200000, "doc_count" : 2 } ] } } }
存入es | 解析时区 | 格式化时区 | 说明 |
---|---|---|---|
字符串通过UTC 0时区解析到的时间戳 | UTC 0时区 | UTC 0时区 | 解析和格式化时区一致,没有问题 |
字符串通过东八区解析到的时间戳 | 东八区 | UTC 0时区 | 解析和格式化时区不一致,数据库导入时间戳到es缺少八小时就是这个原因, 常见, 聚合时需要指定东八区 |
字符串(没有时区) | UTC 0时区 | UTC 0时区 | 解析和格式化时区一致,没有问题, 推荐使用 |
字符串(有时区) | 指定的时区 | UTC 0时区 | 解析和格式化时区不一致的话,就会存在问题 |
总结
elasticsearch时区问题产生的根本原因,说白了就是解析和格式化时的时区不一致造成的
存入时间戳:
存入字符串(没有时区):
备注:
直接存入字符串没有这个问题,存入时间戳时会少八个小时
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。