当前位置:   article > 正文

【图像分割】基于灰狼算法优化Renyi熵实现图像多阈值分割附Matlab代码_灰狼算法优化阈值分割

灰狼算法优化阈值分割

1 内容介绍

在图像阈值分割方法中,Renyi熵法因其显著效能而得到大量应用.为了更好地发挥Renyi熵在图像分割中的应用,提出把Renyi熵法扩展到图像多级阈值化问题.然而,由于计算时间复杂度上的高要求,很难把这种有效的技术推广到复杂图像多级阈值化问题.为减少本方法的计算时间,应用灰狼优化算法实施最佳阈值的搜索.实验结果表明,本方法能有效地对图像进行多级分割,并且显著降低计算时间.

2 部分代码

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fhandle,fnonlin)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/570848
推荐阅读
相关标签
  

闽ICP备14008679号