赞
踩
基于python语言,实现经典禁忌搜索算法(TS)对带有时间窗的车辆路径规划问题( VRPTW )进行求解。
(1)收敛曲线
(2)车辆路径
应用TS算法求解MDVRPTW时保留了已有代码的架构与思路,为能够求解带有时间窗的(多车场)车辆路径规划问题,这里参考既有文献对路径分割算法进行了改进("splitRoutes"函数),在分割车辆路径时不仅考虑了车辆容量限制,还考虑了节点的时间窗约束,以此使得分割后的路径可行。在此改进下继承了大量原有代码,降低了代码改进量。
以csv文件储存数据,其中demand.csv文件记录需求节点数据,共包含需求节点id,需求节点横坐标,需求节点纵坐标,需求量;depot.csv文件记录车场节点数据,共包含车场id,车场横坐标,车场纵坐标,车队数量。需要注意的是:需求节点id应为整数,车场节点id任意,但不可与需求节点id重复。 可参考github主页相关文件。
(1)数据结构
定义Sol()类,Node()类,Model()类,其属性如下表:
属性 | 描述 |
---|---|
obj | 优化目标值 |
node_id_list | 需求节点id有序排列集合 |
cost_of_distance | 距离成本 |
cost_of_time | 时间成本 |
action_id | 解所对应的算子id,用于禁用算子 |
route_list | 车辆路径集合,对应MDVRPTW的解 |
timetable_list | 车辆节点访问时间集合,对应MDVRPTW的解 |
属性 | 描述 |
---|---|
id | 物理节点id,需唯一 |
x_coord | 物理节点x坐标 |
y_coord | 物理节点y坐标 |
demand | 物理节点需求 |
depot_capacity | 车辆基地车队规模 |
start_time | 最早开始服务(被服务)时间 |
end_time | 最晚结束服务(被服务)时间 |
service_time | 需求节点服务时间 |
属性 | 描述 |
---|---|
best_sol | 全局最优解,值类型为Sol() |
demand_dict | 需求节点集合(字典),值类型为Node() |
depot_dict | 车场节点集合(字典),值类型为Node() |
depot_id_list | 车场节点id集合 |
demand_id_list | 需求节点id集合 |
distance_matrix | 节点距离矩阵 |
time_matrix | 节点旅行时间矩阵 |
number_of_demands | 需求节点数量 |
opt_type | 优化目标类型,0:最小旅行距离,1:最小时间成本 |
vehicle_cap | 车辆容量 |
vehicle_speed | 车辆行驶速度,用于计算旅行时间 |
tabu_list | 禁忌表 |
TL | 算子禁忌长度 |
(2)文件读取
def readCSVFile(demand_file,depot_file,model):
with open(demand_file,'r') as f:
demand_reader=csv.DictReader(f)
for row in demand_reader:
node = Node()
node.id = int(row['id'])
node.x_coord = float(row['x_coord'])
node.y_coord = float(row['y_coord'])
node.demand = float(row['demand'])
node.start_time=float(row['start_time'])
node.end_time=float(row['end_time'])
node.service_time=float(row['service_time'])
model.demand_dict[node.id] = node
model.demand_id_list.append(node.id)
model.number_of_demands=len(model.demand_id_list)
with open(depot_file, 'r') as f:
depot_reader = csv.DictReader(f)
for row in depot_reader:
node = Node()
node.id = row['id']
node.x_coord = float(row['x_coord'])
node.y_coord = float(row['y_coord'])
node.depot_capacity = float(row['capacity'])
node.start_time=float(row['start_time'])
node.end_time=float(row['end_time'])
model.depot_dict[node.id] = node
model.depot_id_list.append(node.id)
(3)计算距离&时间矩阵
def calDistanceTimeMatrix(model):
for i in range(len(model.demand_id_list)):
from_node_id = model.demand_id_list[i]
for j in range(i + 1, len(model.demand_id_list)):
to_node_id = model.demand_id_list[j]
dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.demand_dict[to_node_id].x_coord) ** 2
+ (model.demand_dict[from_node_id].y_coord - model.demand_dict[to_node_id].y_coord) ** 2)
model.distance_matrix[from_node_id, to_node_id] = dist
model.distance_matrix[to_node_id, from_node_id] = dist
model.time_matrix[from_node_id,to_node_id] = math.ceil(dist/model.vehicle_speed)
model.time_matrix[to_node_id,from_node_id] = math.ceil(dist/model.vehicle_speed)
for _, depot in model.depot_dict.items():
dist = math.sqrt((model.demand_dict[from_node_id].x_coord - depot.x_coord) ** 2
+ (model.demand_dict[from_node_id].y_coord - depot.y_coord) ** 2)
model.distance_matrix[from_node_id, depot.id] = dist
model.distance_matrix[depot.id, from_node_id] = dist
model.time_matrix[from_node_id,depot.id] = math.ceil(dist/model.vehicle_speed)
model.time_matrix[depot.id,from_node_id] = math.ceil(dist/model.vehicle_speed)
(4)目标值计算
适应度计算依赖" splitRoutes "函数对有序节点序列行解分割得到车辆行驶路线,同时在得到各车辆形式路线后在满足车场车队规模条件下分配最近车场,之后调用 " calTravelCost "函数确定车辆访问各路径节点的到达和离开时间点,并计算旅行距离成本和旅行时间成本。
def calTravelCost(route_list,model):
timetable_list=[]
cost_of_distance=0
cost_of_time=0
for route in route_list:
timetable=[]
for i in range(len(route)):
if i == 0:
depot_id=route[i]
next_node_id=route[i+1]
travel_time=model.time_matrix[depot_id,next_node_id]
departure=max(0,model.demand_dict[next_node_id].start_time-travel_time)
timetable.append((departure,departure))
elif 1<= i <= len(route)-2:
last_node_id=route[i-1]
current_node_id=route[i]
current_node = model.demand_dict[current_node_id]
travel_time=model.time_matrix[last_node_id,current_node_id]
arrival=max(timetable[-1][1]+travel_time,current_node.start_time)
departure=arrival+current_node.service_time
timetable.append((arrival,departure))
cost_of_distance = cost_of_distance + model.distance_matrix[last_node_id,current_node_id]
cost_of_time += model.time_matrix[last_node_id,current_node_id] + current_node.service_time\
+max(current_node.start_time-timetable[-1][1]+travel_time,0)
else:
last_node_id = route[i - 1]
depot_id=route[i]
travel_time = model.time_matrix[last_node_id,depot_id]
departure = timetable[-1][1]+travel_time
timetable.append((departure,departure))
cost_of_distance +=model.distance_matrix[last_node_id,depot_id]
cost_of_time+=model.time_matrix[last_node_id,depot_id]
timetable_list.append(timetable)
return timetable_list,cost_of_time,cost_of_distance
def calObj(sol,model):
node_id_list=copy.deepcopy(sol.node_id_list)
num_vehicle, sol.route_list = splitRoutes(node_id_list, model)
# travel cost
sol.timetable_list,sol.cost_of_time,sol.cost_of_distance =calTravelCost(sol.route_list,model)
if model.opt_type == 0:
sol.obj=sol.cost_of_distance
else:
sol.obj=sol.cost_of_time
(5)初始解生成
def generateInitialSol(node_id_list):
node_id_list_=copy.deepcopy(node_id_list)
random.seed(0)
random.shuffle(node_id_list_)
return node_id_list_
(6)定义邻域生成算子
def createActions(n):
action_list=[]
nswap=n//2
#第一种算子(Swap):前半段与后半段对应位置一对一交换
for i in range(nswap):
action_list.append([1,i,i+nswap])
#第二中算子(DSwap):前半段与后半段对应位置二对二交换
for i in range(0,nswap,2):
action_list.append([2,i,i+nswap])
#第三种算子(Reverse):指定长度的序列反序
for i in range(0,n,4):
action_list.append([3,i,i+3])
return action_list
(7)生成邻域
def doAction(node_id_list,action):
node_id_list_=copy.deepcopy(node_id_list)
if action[0]==1:
index_1=action[1]
index_2=action[2]
node_id_list_[index_1],node_id_list_[index_2]=node_id_list_[index_2],node_id_list_[index_1]
return node_id_list_
elif action[0]==2:
index_1 = action[1]
index_2 = action[2]
temporary=[node_id_list_[index_1],node_id_list_[index_1+1]]
node_id_list_[index_1]=node_id_list_[index_2]
node_id_list_[index_1+1]=node_id_list_[index_2+1]
node_id_list_[index_2]=temporary[0]
node_id_list_[index_2+1]=temporary[1]
return node_id_list_
elif action[0]==3:
index_1=action[1]
index_2=action[2]
node_id_list_[index_1:index_2+1]=list(reversed(node_id_list_[index_1:index_2+1]))
return node_id_list_
(8)绘制收敛曲线
def plotObj(obj_list):
plt.rcParams['font.sans-serif'] = ['SimHei'] #show chinese
plt.rcParams['axes.unicode_minus'] = False # Show minus sign
plt.plot(np.arange(1,len(obj_list)+1),obj_list)
plt.xlabel('Iterations')
plt.ylabel('Obj Value')
plt.grid()
plt.xlim(1,len(obj_list)+1)
plt.show()
(9)绘制车辆路线
def plotRoutes(model):
for route in model.best_sol.route_list:
x_coord=[model.depot_dict[route[0]].x_coord]
y_coord=[model.depot_dict[route[0]].y_coord]
for node_id in route[1:-1]:
x_coord.append(model.demand_dict[node_id].x_coord)
y_coord.append(model.demand_dict[node_id].y_coord)
x_coord.append(model.depot_dict[route[-1]].x_coord)
y_coord.append(model.depot_dict[route[-1]].y_coord)
plt.grid()
if route[0]=='d1':
plt.plot(x_coord,y_coord,marker='o',color='black',linewidth=0.5,markersize=5)
elif route[0]=='d2':
plt.plot(x_coord,y_coord,marker='o',color='orange',linewidth=0.5,markersize=5)
else:
plt.plot(x_coord,y_coord,marker='o',color='b',linewidth=0.5,markersize=5)
plt.xlabel('x_coord')
plt.ylabel('y_coord')
plt.show()
(10)输出结果
def outPut(model):
work=xlsxwriter.Workbook('result.xlsx')
worksheet=work.add_worksheet()
worksheet.write(0, 0, 'cost_of_time')
worksheet.write(0, 1, 'cost_of_distance')
worksheet.write(0, 2, 'opt_type')
worksheet.write(0, 3, 'obj')
worksheet.write(1,0,model.best_sol.cost_of_time)
worksheet.write(1,1,model.best_sol.cost_of_distance)
worksheet.write(1,2,model.opt_type)
worksheet.write(1,3,model.best_sol.obj)
worksheet.write(2,0,'vehicleID')
worksheet.write(2,1,'route')
worksheet.write(2,2,'timetable')
for row,route in enumerate(model.best_sol.route_list):
worksheet.write(row+3,0,'v'+str(row+1))
r=[str(i)for i in route]
worksheet.write(row+3,1, '-'.join(r))
r=[str(i)for i in model.best_sol.timetable_list[row]]
worksheet.write(row+3,2, '-'.join(r))
work.close()
(11)主函数
def run(demand_file,depot_file,epochs,v_cap,opt_type):
"""
:param demand_file: demand file path
:param depot_file: depot file path
:param epochs: Iterations
:param v_cap: Vehicle capacity
:param opt_type: Optimization type:0:Minimize the number of vehicles,1:Minimize travel distance
:return: 无
"""
model=Model()
model.vehicle_cap=v_cap
model.opt_type=opt_type
readCSVFile(demand_file,depot_file,model)
calDistanceTimeMatrix(model)
action_list=createActions(len(model.demand_id_list))
model.tabu_list=np.zeros(len(action_list))
history_best_obj=[]
sol=Sol()
sol.node_id_list=generateInitialSol(model.demand_id_list)
calObj(sol,model)
model.best_sol=copy.deepcopy(sol)
history_best_obj.append(sol.obj)
for ep in range(epochs):
local_new_sol=Sol()
local_new_sol.obj=float('inf')
for i in range(len(action_list)):
if model.tabu_list[i]==0:
new_sol=Sol()
new_sol.node_id_list=doAction(sol.node_id_list,action_list[i])
calObj(new_sol,model)
new_sol.action_id=i
if new_sol.obj<local_new_sol.obj:
local_new_sol=copy.deepcopy(new_sol)
sol=local_new_sol
for i in range(len(action_list)):
if i==sol.action_id:
model.tabu_list[sol.action_id]=model.TL
else:
model.tabu_list[i]=max(model.tabu_list[i]-1,0)
if sol.obj<model.best_sol.obj:
model.best_sol=copy.deepcopy(sol)
history_best_obj.append(model.best_sol.obj)
print("%s/%s: best obj: %s"%(ep,epochs,model.best_sol.obj))
plotObj(history_best_obj)
plotRoutes(model)
outPut(model)
有偿,私信
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。