当前位置:   article > 正文

数据结构:二叉树的概念和性质

数据结构:二叉树的概念和性质

每日一言

宇宙中的一切皆在你之内,向内寻求你所需要的答案。


树的基本概念

1.1 什么是树?

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点
  • 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合Ti (1 <= i <=m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 树是递归定义的,这意味着我们可以使用递归完成一些对树的操作。
    在这里插入图片描述

注意:
1. 树形结构中,子树之间不能有交集,否则就不是树形结构
2. 除了根节点外,每个节点有且仅有一个父节点
3. 一颗N个节点的数有N-1条边

一些概念

在这里插入图片描述
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度:树中结点的最大层次; 如上图:树的高度为4
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G…等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林

二叉树

什么是二叉树?

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

注意: 二叉树中不存在度大于2的节点

两种比较特殊的二叉树

  1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是 2^k - 1,则它就是满二叉树。
  2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。

注意:满二叉树是一种特殊的完全二叉树

二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) (i>0)个结点
  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^k - 1 (k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为log2(n+1) 上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
    的结点有:
    • 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
    • 若2i+1<n,左孩子序号:2i+1,否则无左孩子
    • 若2i+2<n,右孩子序号:2i+2,否则无右孩子

结语

请给自己些耐心,不要急于求成。
山外青山楼外楼,莫把百尺当尽头。
保持空杯心态加油努力吧!


都看到这里啦!真棒(*^▽^*)

可以给作者一个免费的赞赞吗,这将会鼓励我继续创作,谢谢大家

编程小白写作,如有纰漏或错误,欢迎指正


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/610523
推荐阅读
相关标签
  

闽ICP备14008679号