赞
踩
1、Dropout、Dropconnect、Dropblock
Dropout、Dropconnect、Dropblock_Hello Python的博客-CSDN博客
dropout层_Dropout、Dropconnect_weixin_39623350的博客-CSDN博客
在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。
过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合。此时,训练模型费时就成为一个很大的问题,不仅训练多个模型费时,测试多个模型也是很费时。
综上所述,训练深度神经网络的时候,总是会遇到两大缺点:
(1)容易过拟合
(2)费时
Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果。
dropout的过程:
1、 首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变
2、 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)
3、 恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
4、 然后继续重复这一过程。
在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。
在2012年,Alex、Hinton在其论文《ImageNet Classification with Deep Convolutional Neural Networks》中用到了Dropout算法,用于防止过拟合。并且,这篇论文提到的AlexNet网络模型引爆了神经网络应用热潮,并赢得了2012年图像识别大赛冠军,使得CNN成为图像分类上的核心算法模型。
随后,又有一些关于Dropout的文章《Dropout:A Simple Way to Prevent Neural Networks from Overfitting》、《Improving Neural Networks with Dropout》、《Dropout as data augmentation》。
从上面的论文中,我们能感受到Dropout在深度学习中的重要性。那么,到底什么是Dropout呢?
Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。
Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如图1所示。
图1:使用Dropout的神经网络模型
2. Dropout工作流程及使用
2.1 Dropout具体工作流程
假设我们要训练这样一个神经网络,如图2所示。
典型的神经网络其训练流程是将输入通过网络进行正向传导,然后将误差进行反向传播,图2。Dropout就是针对这一过程之中,随机地删除隐藏层的部分单元,进行上述过程。步骤如下:
(1)随机(临时)删除网络中的一些隐藏神经元(被删除神经元的参数要保存),保持输入输出神经元不变(图3中虚线为部分临时被删除的神经元)
(2)将输入x通过修改后的网络进行前向传播,然后将误差通过修改后的网络进行反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。
(3)然后重复上述操作
具体讲解一下Dropout代码层面的一些公式推导
对应的公式变化如下:
没有Dropout的网络计算公式:
采用Dropout的网络计算公式:
上面公式中Bernoulli函数是为了生成概率r向量,也就是随机生成一个0、1的向量。
代码层面实现让某个神经元以概率p停止工作,其实就是让它的激活函数值以概率p变为0。比如我们某一层网络神经元的个数为1000个,其激活函数输出值为y1、y2、y3、......、y1000,我们dropout比率选择0.4,那么这一层神经元经过dropout后,1000个神经元中会有大约400个的值被置为0。
注意: 经过上面屏蔽掉某些神经元,使其激活值为0以后,我们还需要对向量y1……y1000进行缩放,也就是乘以1/(1-p)。如果你在训练的时候,经过置0后,没有对y1……y1000进行缩放(rescale),那么在测试的时候,就需要对权重进行缩放,操作如下。
(2)在测试模型阶段
预测模型的时候,每一个神经单元的权重参数要乘以概率p。
图5:预测模型时Dropout的操作
测试阶段Dropout公式:
Hintion的直观解释和理由如下:
1. 减少神经元之间复杂的共适应关系,强迫网络拥有冗余的表示:由于每次用输入网络的样本进行权值更新时,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。
2. 可以将dropout看作是模型平均的一种。对于每次输入到网络中的样本(可能是一个样本,也可能是一个batch的样本),其对应的网络结构都是不同的,但所有的这些不同的网络结构又同时share隐含节点的权值。这样不同的样本就对应不同的模型,是bagging的一种极端情况。个人感觉这个解释稍微靠谱些,和bagging,boosting理论有点像,但又不完全相同。
3. native bayes是dropout的一个特例。Native bayes有个错误的前提,即假设各个特征之间相互独立,这样在训练样本比较少的情况下,单独对每个特征进行学习,测试时将所有的特征都相乘,且在实际应用时效果还不错。而Droput每次不是训练一个特征,而是一部分隐含层特征。
4. 还有一个比较有意思的解释是,Dropout类似于性别在生物进化中的角色,物种为了使适应不断变化的环境,性别的出现有效的阻止了过拟合,即避免环境改变时物种可能面临的灭亡。
a、可以把dropout看成是 一种ensemble方法,每次做完dropout相当于从原网络中找到一个更瘦的网络
b、强迫神经元和其他随机挑选出来的神经元共同工作,减弱了神经元节点间的联合适应性,增强泛化能力
c、使用dropout得到更多的局部簇,同等数据下,簇变多了,因而区分性变大,稀疏性也更大
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。