当前位置:   article > 正文

【Spring AI】05. 向量数据库_spring ai使用向量数据库

spring ai使用向量数据库

向量数据库

向量数据库是一种在 AI 应用中发挥关键作用的特定类型的数据库。
在向量数据库中,查询与传统关系数据库不同。它们不执行精确匹配,而是执行相似性搜索。当以向量作为查询时,向量数据库返回与查询向量“相似”的向量。有关如何在高层次计算此相似性的更多详细信息,请参阅 向量相似性
向量数据库用于将您的数据与 AI 模型集成。它们的使用的第一步是将您的数据加载到向量数据库中。然后,当用户查询要发送到 AI 模型时,首先检索一组相似的文档。然后,这些文档作为用户问题的上下文,并与用户的查询一起发送到 AI 模型。这种技术被称为检索增强生成(RAG)。
以下部分描述了 Spring AI 接口,用于使用多个向量数据库实现和一些高级示例用法。
最后一部分旨在揭示向量数据库中相似搜索的基本方法。

概述


本节作为 Spring AI 框架中VectorStore接口及其关联类的指南。
Spring AI 通过VectorStore接口为向量数据库交互提供了抽象化的 API。
这里是 VectorStore 接口的定义:

public interface VectorStore {

    void add(List<Document> documents);

    Optional<Boolean> delete(List<String> idList);

    List<Document> similaritySearch(String query);

    List<Document> similaritySearch(SearchRequest request);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

和相关的 SearchRequest 构建器:

public class SearchRequest {

	public final String query;
	private int topK = 4;
	private double similarityThreshold = SIMILARITY_THRESHOLD_ALL;
	private Filter.Expression filterExpression;

	public static SearchRequest query(String query) { return new SearchRequest(query); }

	private SearchRequest(String query) { this.query = query; }

	public SearchRequest withTopK(int topK) {...}
	public SearchRequest withSimilarityThreshold(double threshold) {...}
	public SearchRequest withSimilarityThresholdAll() {...}
	public SearchRequest withFilterExpression(Filter.Expression expression) {...}
	public SearchRequest withFilterExpression(String textExpression) {...}

	public String getQuery() {...}
	public int getTopK() {...}
	public double getSimilarityThreshold() {...}
	public Filter.Expression getFilterExpression() {...}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

要将数据插入向量数据库,请将其封装在Document对象中。Document类封装来自数据源(如 PDF 或 Word 文档)的内容,并包含表示为字符串的文本。它还包含键值对形式的元数据,包括文件名等详细信息。
插入向量数据库时,文本内容会被转换为数值数组,或称为向量嵌入。嵌入模型,如 Word2Vec、GLoVE 和 BERT,或 OpenAI 的text-embedding-ada-002,将单词、句子或段落转换为这些向量嵌入。
向量数据库的作用是存储和促进这些嵌入的相似性搜索。它本身不生成嵌入向量。要创建嵌入向量,应该使用EmbeddingClient。
接口中的similaritySearch方法允许检索与给定查询字符串类似的文档。可以通过使用以下参数来对这些方法进行微调:

  • k:一个整数,指定要返回的相似文档的最大数量。这通常被称为“top K”搜索,或“K 最近邻”(KNN)。
  • threshold:一个从 0 到 1 范围的双精度值,值越接近 1 表示相似度越高。默认情况下,如果您设置了 0.75 的阈值,那么只有相似度高于此值的文档才会被返回。
  • Filter.Expression:用于传递类似于 SQL 中的“where”子句的流畅 DSL(领域特定语言)表达式的类,但它仅适用于Document的元数据键值对。
  • filterExpression:基于 ANTLR4 的外部 DSL,接受过滤表达式作为字符串。例如,对于像 country、year 和isActive这样的元数据键,您可以使用如下表达式:country == ‘UK’ && year >= 2020 && isActive == true.

在 Metadata Filters 部分查找有关Filter.Expression的更多信息。


可用实现


这些是VectorStore接口的可用实现:

  • Azure Vector Search - Azure 向量存储。
  • ChromaVectorStore - Chroma 向量存储。
  • MilvusVectorStore - Milvus 向量存储。
  • Neo4jVectorStore - Neo4j 向量存储。
  • PgVectorStore - PostgreSQL/PGVector 向量存储。
  • PineconeVectorStore - PineCone 向量存储。
  • QdrantVectorStore - Qdrant 向量存储。
  • RedisVectorStore - Redis 向量存储。
  • WeaviateVectorStore - Weaviate 向量存储。
  • SimpleVectorStore - 一个简单的持久化向量存储实现,适用于教育目的。
    未来版本可能支持更多的实现。
    如果您需要由 Spring AI 支持的向量数据库,请在 GitHub 上提出问题,或者更好地,提交一个实现的拉取请求。
    每个VectorStore实现的信息可以在本章的子章节中找到。

示例用法


要为向量数据库计算嵌入向量,您需要选择与 AI 模型相匹配的嵌入向量模型。
例如,使用OpenAI的ChatGPT,我们使用OpenAiEmbeddingClient和名称为text-embedding-ada-002的模型。
Spring Boot starter 的自动配置可以在 Spring 应用程序上下文中生成一个EmbeddingClient的实现,以便进行依赖注入。
一般通过类似批处理作业的方法将数据加载到向量存储中,首先将数据加载到 Spring AI 的Document类中,然后调用save方法。
给定一个指向我们要加载到向量数据库中的数据 JSON 文件的源文件的 String 引用,我们使用 Spring AI 的 JsonReader 来加载 JSON 中的特定字段,将它们拆分成小块,然后将这些小块传递给向量存储实现。 VectorStore 实现计算嵌入向量并将 JSON 和嵌入向量存储在向量数据库中:

  @Autowired
  VectorStore vectorStore;

  void load(String sourceFile) {
            JsonReader jsonReader = new JsonReader(new FileSystemResource(sourceFile),
                    "price", "name", "shortDescription", "description", "tags");
            List<Document> documents = jsonReader.get();
            this.vectorStore.add(documents);
  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

然后,当用户问题传递到 AI 模型时,会进行相似性搜索以检索类似的文档,然后将这些文档“填充”到提示中,作为用户问题的上下文。

   String question = <question from user>
   List<Document> similarDocuments = store.similaritySearch(question);
  • 1
  • 2

可以将附加选项参数传递到similaritySearch方法中,以定义要检索多少个文档以及相似性搜索的阈值。

元数据过滤器

本节描述了您可以针对查询结果使用的各种过滤器。

Filter String

您可以将类似于 SQL 的过滤表达式作为String传递给其中一个similaritySearch重载类。
请参考以下示例:

* "country == 'BG'"
* "genre == 'drama' && year >= 2020"
* "genre in ['comedy', 'documentary', 'drama']"
  • 1
  • 2
  • 3

Filter.Expression

您可以使用流式 API 的 FilterExpressionBuilder 创建 Filter.Expression 的实例。一个简单的示例如下:

FilterExpressionBuilder b = new FilterExpressionBuilder();
Expression expression = b.eq("country", "BG").build();
  • 1
  • 2

您可以通过使用以下运算符来构建复杂的表达式:

EQUALS: '=='
MINUS : '-'
PLUS: '+'
GT: '>'
GE: '>='
LT: '<'
LE: '<='
NE: '!='
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

您可以通过使用以下运算符来组合表达式:

AND: 'AND' | 'and' | '&&';
OR: 'OR' | 'or' | '||';
  • 1
  • 2

考虑以下示例:

Expression exp = b.and(b.eq("genre", "drama"), b.gte("year", 2020)).build();
  • 1

您还可以使用以下运算符:

IN: 'IN' | 'in';
NIN: 'NIN' | 'nin';
NOT: 'NOT' | 'not';
  • 1
  • 2
  • 3

考虑以下例子(官方给的例子不是很匹配运算符):

Expression exp = b.and(b.eq("genre", "drama"), b.gte("year", 2020)).build();
  • 1

理解向量

请参考 100. 理解向量 章节

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/659604
推荐阅读
相关标签
  

闽ICP备14008679号