赞
踩
上一篇文章记录了paddle-lite在arm开发板上部署PaddleOCR的流程,文末也提到了自己使用NCNN去部署的预告,正好今天刚好有时间,就写一篇文章记录一下NCNN部署的过程,本文暂时是介绍了部署在PC上,后面会再出一篇在arm开发板上部署的文章,因为流程基本上是一样的,可能有些同学对NCNN的部署不是太了解,所以从PC端讲起会更容易理解一些。本文还是部署的PaddleOCR的移动端模型。
贴一段官方介绍:
ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。
因为只是在PC上部署,所以只需要ubuntu电脑一台,CMake这些环境默认是安装好了的,然后编译NCNN,编译的流程如下:
git clone https://github.com/Tencent/ncnn.git
cd ncnn
git submodule update --init
mkdir build
cd build
cmake ..
make
make install
一般来说编译都是比较顺利的,编译完后在build的文件夹中可以看到如下文件:
NCNN的环境就编译好了。
使用ncnn推理,需要将paddle框架下的模型转换成ncnn后才可以使用,因为paddle没有直接转成ncnn的路径,所以需要经过onnx再转过去,首先需要将paddle的模型下载下来,路径PaddleOCR:
我下载的是图上画圈的推理模型,为什么不用最新的ch_PP-OCRv2_xx,是因为我再转这个版本的识别模型的时候,模型转换成功了,每遇到什么报错,但是推理结果识别有点差,暂时没找到问题的所在,所以还是用了原来的mobilenetv3的版本,这个版本转换后识别是正常的。
下载下来后使用paddle2onnx将paddle模型转换成onnx模型,paddle2onnx的安装方式也比较简单:
pip install paddle2onnx
paddle2onnx转onnx有两种模型,一种是静态图转换,一种是动态图转换,这里指的是paddle的框架模型,因为paddle即支持静态图也支持动态图,而我们所熟悉的pytorch是动态图框架,早期的tensorflow是静态图框架。
paddleOCR的预训练模型是动态图权重,推理模型是经过转换后的静态图权重,因为我们下载的是推理模型,所以使用静态图的方式转换;
paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_det_infer --model_filename inference.pdmodel --params_filename inference.pdiparams --save_file ./inference/ch_ppocr_mobile_v2.0_rec_infer/det.onnx --opset_version 11 --enable_onnx_checker True
检测模型转onnx后默认的尺寸为(-1,3 ,640 ,640),如果我们需要修改模型输入的尺寸和batch,可以使用以下python代码用onnx修改得到的onnx模型输入尺寸(?, 3 ,?,?):
file_path = './inference/ch_ppocr_mobile_v2.0_det_infer/det.onnx'
model = onnx.load(file_path)
model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = '?'
model.graph.input[0].type.tensor_type.shape.dim[2].dim_param = '?'
model.graph.input[0].type.tensor_type.shape.dim[3].dim_param = '?'
onnx.save(model, './inference/ch_ppocr_mobile_v2.0_det_infer/det.onnx')
paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_rec_infer --model_filename inference.pdmodel --params_filename inference.pdiparams --save_file ./inference/ch_ppocr_mobile_v2.0_rec_infer/rec_mbv3.onnx --opset_version 11 --enable_onnx_checker True
识别模型转换后默认的尺寸是(-1,3,32,100),修改动态尺寸方法同上。
两个模型默认的输入输出分别为:x,save_infer_model/scale_0.tmp_1,这个可以使用netron进行查看。
如果不确定自己的onnx模型转换出来是否正确,可以使用以下python代码进行检测,提供了onnx的推理识别过程,代码比较长贴在文末。
转onnx的动态尺寸修改是可选的,因为ncnn本身就支持动态输入,所以不用以上代码修改也是可以的,贴出来只是为了方便有时候需要onnx推理校验的时候用到,最后转换后得到两个onnx文件:det.onnx和rec_mbv3.onnx,直接转ncnn的话会有点问题,需要用onnxsim简化一下,合并一些op,onnxsim的使用如下:
pip install onnx-simplifier # pip安装,如果已经安装了可以不用执行这一步
python -m onnxsim det.onnx det_sim.onnx # 直接运行
cd到onnx文件所在的目录下,分别简化det和rec_mbv3的onnx模型,得到det_sim.onnx和rec_mbv3_sim.onnx文件。将这两个文件拷贝到刚才编译的ncnn文件夹中,拷贝的位置为./ncnn/build/tools/onnx
然后在该目录下打开终端,分别运行:
./onnx2ncnn det_sim.onnx det_sim.param det_sim.bin
./onnx2ncnn rec_mbv3_sim.onnx rec_mbv3_sim.param rec_mbv3_sim.bin
得到如下四个文件:
然后拷贝出来备用。ncnn还提供了fp16和int8量化功能,这个可以自己去了解,识别模型量化会有问题,可以只量化检测模型。
NCNN量化之ncnn2table和ncnn2int8
先上一张代码结构,环境是Clion,文件结构如下:
其中,dict里是字典文件,include和lib文件夹是从ncnn中拷贝过来,在./ncnn/build/install中,方便引用;四个源文件cpp,其头文件也新建在include文件夹中;model里存放了刚才生成的ncnn模型文件,新建一个CMakeLists.txt文件夹,编写内容如下:
cmake_minimum_required(VERSION 3.16) project(ocr_ncnn) find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) include_directories(include/ncnn) include_directories(include) link_directories(lib) FIND_PACKAGE( OpenMP REQUIRED) if(OPENMP_FOUND) message("OPENMP FOUND") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}") set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}") endif() set(CMAKE_CXX_STANDARD 14) add_executable(ocr_ncnn demo.cpp src/clipper.cpp src/DbNet.cpp src/OcrStruct.cpp src/Crnn.cpp) target_link_libraries(ocr_ncnn ncnn ${OpenCV_LIBS})
接口调用示例:
// // Created by cai on 2021/10/13. // #include <opencv2/opencv.hpp> #include <iostream> #include <opencv2/highgui/highgui.hpp> #include "net.h" #include <OcrStruct.h> #include <DbNet.h> #include <Crnn.h> using namespace cv; using namespace std; int main(){ DbNet dbNet; CRNN Crnn; bool retDbNet = dbNet.initModel("../model/det_int8"); bool retCrnn = Crnn.initModel("../model/rec_mbv3"); if (!retDbNet || !retCrnn){ printf("DBNet load model fail!"); } const char*imagepath = "../test_img"; vector<String> imagesPath; cv::glob(imagepath,imagesPath); for (int i =0;i<imagesPath.size();i++) { //载入图像 cout << imagesPath[i] << endl; Mat image = imread(imagesPath[i]); if (image.empty()) { cout << "Error: Could not load image" << endl; return -1; } //【3】记录起始时间 double time0 = static_cast<double>(getTickCount()); // 记录开始时间 vector<cv::Mat> crop; crop = dbNet.getTextImages(image); vector<std::string> result; result = Crnn.getRecText(crop); //【5】计算运行时间并输出 time0 = ((double) getTickCount() - time0) / getTickFrequency(); //结束时间-开始时间,并化为秒单位 cout << "\t识别运行时间为: " << time0 << "秒" << endl; //输出运行时间 for (auto &txt : result) { // 输出识别结果 cout << txt << "\n" << endl; } } return 0; }
运行示例:
import os import sys import cv2 import time import onnx import math import copy import onnxruntime import numpy as np import pyclipper from shapely.geometry import Polygon # PalldeOCR 检测模块 需要用到的图片预处理类 class NormalizeImage(object): """ normalize image such as substract mean, divide std """ def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs): if isinstance(scale, str): scale = eval(scale) self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) mean = mean if mean is not None else [0.485, 0.456, 0.406] std = std if std is not None else [0.229, 0.224, 0.225] shape = (3, 1, 1) if order == 'chw' else (1, 1, 3) self.mean = np.array(mean).reshape(shape).astype('float32') self.std = np.array(std).reshape(shape).astype('float32') def __call__(self, data): img = data['image'] from PIL import Image if isinstance(img, Image.Image): img = np.array(img) assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage" data['image'] = ( img.astype('float32') * self.scale - self.mean) / self.std return data class ToCHWImage(object): """ convert hwc image to chw image """ def __init__(self, **kwargs): pass def __call__(self, data): img = data['image'] from PIL import Image if isinstance(img, Image.Image): img = np.array(img) data['image'] = img.transpose((2, 0, 1)) return data class KeepKeys(object): def __init__(self, keep_keys, **kwargs): self.keep_keys = keep_keys def __call__(self, data): data_list = [] for key in self.keep_keys: data_list.append(data[key]) return data_list class DetResizeForTest(object): def __init__(self, **kwargs): super(DetResizeForTest, self).__init__() self.resize_type = 0 self.limit_side_len = kwargs['limit_side_len'] self.limit_type = kwargs.get('limit_type', 'min') def __call__(self, data): img = data['image'] src_h, src_w, _ = img.shape img, [ratio_h, ratio_w] = self.resize_image_type0(img) data['image'] = img data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w]) return data def resize_image_type0(self, img): """ resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w) """ limit_side_len = self.limit_side_len h, w, _ = img.shape # limit the max side if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) # return img, np.array([h, w]) return img, [ratio_h, ratio_w] ### 检测结果后处理过程(得到检测框) class DBPostProcess(object): """ The post process for Differentiable Binarization (DB). """ def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=2.0, use_dilation=False, **kwargs): self.thresh = thresh self.box_thresh = box_thresh self.max_candidates = max_candidates self.unclip_ratio = unclip_ratio self.min_size = 3 self.dilation_kernel = None if not use_dilation else np.array( [[1, 1], [1, 1]]) def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1} ''' bitmap = _bitmap height, width = bitmap.shape outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(outs) == 3: img, contours, _ = outs[0], outs[1], outs[2] elif len(outs) == 2: contours, _ = outs[0], outs[1] num_contours = min(len(contours), self.max_candidates) boxes = [] scores = [] for index in range(num_contours): contour = contours[index] points, sside = self.get_mini_boxes(contour) if sside < self.min_size: continue points = np.array(points) score = self.box_score_fast(pred, points.reshape(-1, 2)) if self.box_thresh > score: continue box = self.unclip(points).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.astype(np.int16)) scores.append(score) return np.array(boxes, dtype=np.int16), scores def unclip(self, box): unclip_ratio = self.unclip_ratio poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(self, contour): bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [ points[index_1], points[index_2], points[index_3], points[index_4] ] return box, min(bounding_box[1]) def box_score_fast(self, bitmap, _box): h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def __call__(self, outs_dict, shape_list): pred = outs_dict pred = pred[:, 0, :, :] segmentation = pred > self.thresh boxes_batch = [] for batch_index in range(pred.shape[0]): src_h, src_w, ratio_h, ratio_w = shape_list[batch_index] # 图片缩放比例 if self.dilation_kernel is not None: mask = cv2.dilate( np.array(segmentation[batch_index]).astype(np.uint8), self.dilation_kernel) else: mask = segmentation[batch_index] boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h) boxes_batch.append({'points': boxes}) return boxes_batch ## 根据推理结果解码识别结果 class process_pred(object): def __init__(self, character_dict_path=None, character_type='ch', use_space_char=False): self.character_str = '' with open(character_dict_path, 'rb') as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip('\n').strip('\r\n') self.character_str += line if use_space_char: self.character_str += ' ' dict_character = list(self.character_str) dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): result_list = [] ignored_tokens = [0] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if is_remove_duplicate: if idx > 0 and text_index[batch_idx][idx - 1] == text_index[batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list))) return result_list def __call__(self, preds, label=None): if not isinstance(preds, np.ndarray): preds = np.array(preds) preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) if label is None: return text label = self.decode(label) return text, label class det_rec_functions(object): def __init__(self, image, use_large=False): self.img = image.copy() self.det_file = './weights/det_d.onnx' self.small_rec_file = './weights/rec_d.onnx' self.large_rec_file = './weights/rec_d.onnx' self.onet_det_session = onnxruntime.InferenceSession(self.det_file) if use_large: self.onet_rec_session = onnxruntime.InferenceSession(self.large_rec_file) else: self.onet_rec_session = onnxruntime.InferenceSession(self.small_rec_file) self.infer_before_process_op, self.det_re_process_op = self.get_process() self.postprocess_op = process_pred('./torchocr/datasets/alphabets/ppocr_keys_v1.txt', 'ch', True) ## 图片预处理过程 def transform(self, data, ops=None): """ transform """ if ops is None: ops = [] for op in ops: data = op(data) if data is None: return None return data def create_operators(self, op_param_list, global_config=None): """ create operators based on the config Args: params(list): a dict list, used to create some operators """ assert isinstance(op_param_list, list), ('operator config should be a list') ops = [] for operator in op_param_list: assert isinstance(operator, dict) and len(operator) == 1, "yaml format error" op_name = list(operator)[0] param = {} if operator[op_name] is None else operator[op_name] if global_config is not None: param.update(global_config) op = eval(op_name)(**param) ops.append(op) return ops ### 检测框的后处理 def order_points_clockwise(self, pts): """ reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py # sort the points based on their x-coordinates """ xSorted = pts[np.argsort(pts[:, 0]), :] # grab the left-most and right-most points from the sorted # x-roodinate points leftMost = xSorted[:2, :] rightMost = xSorted[2:, :] # now, sort the left-most coordinates according to their # y-coordinates so we can grab the top-left and bottom-left # points, respectively leftMost = leftMost[np.argsort(leftMost[:, 1]), :] (tl, bl) = leftMost rightMost = rightMost[np.argsort(rightMost[:, 1]), :] (tr, br) = rightMost rect = np.array([tl, tr, br, bl], dtype="float32") return rect def clip_det_res(self, points, img_height, img_width): for pno in range(points.shape[0]): points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) return points def filter_tag_det_res(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: box = self.order_points_clockwise(box) box = self.clip_det_res(box, img_height, img_width) rect_width = int(np.linalg.norm(box[0] - box[1])) rect_height = int(np.linalg.norm(box[0] - box[3])) if rect_width <= 3 or rect_height <= 3: continue dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes ### 定义图片前处理过程,和检测结果后处理过程 def get_process(self): det_db_thresh = 0.3 det_db_box_thresh = 0.5 max_candidates = 2000 unclip_ratio = 1.6 use_dilation = True pre_process_list = [{ 'DetResizeForTest': { 'limit_side_len': 2500, 'limit_type': 'max' } }, { 'NormalizeImage': { 'std': [0.5, 0.5, 0.5], 'mean': [0.5, 0.5, 0.5], 'scale': '1./255.', 'order': 'hwc' } }, { 'ToCHWImage': None }, { 'KeepKeys': { 'keep_keys': ['image', 'shape'] } }] infer_before_process_op = self.create_operators(pre_process_list) det_re_process_op = DBPostProcess(det_db_thresh, det_db_box_thresh, max_candidates, unclip_ratio, use_dilation) return infer_before_process_op, det_re_process_op def sorted_boxes(self, dt_boxes): """ Sort text boxes in order from top to bottom, left to right args: dt_boxes(array):detected text boxes with shape [4, 2] return: sorted boxes(array) with shape [4, 2] """ num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \ (_boxes[i + 1][0][0] < _boxes[i][0][0]): tmp = _boxes[i] _boxes[i] = _boxes[i + 1] _boxes[i + 1] = tmp return _boxes ### 图像输入预处理 def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = [int(v) for v in "3, 32, 100".split(",")] assert imgC == img.shape[2] imgW = int((32 * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im ## 推理检测图片中的部分 def get_boxes(self): img_ori = self.img img_part = img_ori.copy() data_part = {'image': img_part} data_part = self.transform(data_part, self.infer_before_process_op) img_part, shape_part_list = data_part img_part = np.expand_dims(img_part, axis=0) shape_part_list = np.expand_dims(shape_part_list, axis=0) inputs_part = {self.onet_det_session.get_inputs()[0].name: img_part} outs_part = self.onet_det_session.run(None, inputs_part) post_res_part = self.det_re_process_op(outs_part[0], shape_part_list) dt_boxes_part = post_res_part[0]['points'] dt_boxes_part = self.filter_tag_det_res(dt_boxes_part, img_ori.shape) dt_boxes_part = self.sorted_boxes(dt_boxes_part) return dt_boxes_part ### 根据bounding box得到单元格图片 def get_rotate_crop_image(self, img, points): img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img ### 单张图片推理 def get_img_res(self, onnx_model, img, process_op): h, w = img.shape[:2] img = self.resize_norm_img(img, w * 1.0 / h) img = img[np.newaxis, :] inputs = {onnx_model.get_inputs()[0].name: img} outs = onnx_model.run(None, inputs) result = process_op(outs[0]) return result def recognition_img(self, dt_boxes): img_ori = self.img img = img_ori.copy() ### 识别过程 ## 根据bndbox得到小图片 img_list = [] for box in dt_boxes: tmp_box = copy.deepcopy(box) img_crop = self.get_rotate_crop_image(img, tmp_box) img_list.append(img_crop) ## 识别小图片 results = [] results_info = [] for pic in img_list: res = self.get_img_res(self.onet_rec_session, pic, self.postprocess_op) results.append(res[0]) results_info.append(res) return results, results_info if __name__=='__main__': import os img_path = "../test_img" for name in os.listdir(img_path): time1 = time.time() image = cv2.imread(os.path.join(img_path,name)) # 读取图片 # image = cv2.imread('./7.png') # OCR-检测-识别 ocr_sys = det_rec_functions(image) # 得到检测框 dt_boxes = ocr_sys.get_boxes() # 识别 results: 单纯的识别结果,results_info: 识别结果+置信度 results, results_info = ocr_sys.recognition_img(dt_boxes) time2 = time.time() print(time2-time1) print(results) print()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。