当前位置:   article > 正文

Matplotlib简单上手总结_matplotlib画图设置tickt

matplotlib画图设置tickt

Matplotlib

1.1 什么是Matplotlib

画二维图表的python库

  • mat - matrix 矩阵

  • 二维数据 - 二维图表

  • plot - 画图

  • lib - library 库

matlab 矩阵实验室
mat - matrix矩阵
lab 实验室

1.2 为什么要学习Matplotlib

画图

数据可视化 - 帮助理解数据,方便选择更合适的分析方法
js库 - D3和echarts

1.3 实现一个简单的Matplotlib画图

import matplotlib.pyplot as plt 

plt.figure()
plt.plot([1,0,9],[4,5,6])
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5

图1

1.4 认识Matplotlib图像结构

Matplotlib三层结构

  1. 容器层

    • 画板层Canvas
    • 画布层Figure
    • 绘图区/坐标系
    • x、y轴张成的区域
  2. 辅助显示层

  3. 图像层

2.1 折线图(plot)与基础绘图功能

2.1.1 折线图绘制与保存图片

设置画布属性与图片保存

  • figsize : 画布大小
  • dpi : dot per inch 图像的清晰度
  • savefig:保存路径
# 展现上海一周的天气,比如从星期一到星期日的天气温度如下
# 1、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 2、绘制图像
plt.plot([1, 2, 3, 4, 5, 6, 7], [17, 17, 18, 15, 11, 11, 13])

# 保存图像
plt.savefig("test78.png")

# 3、显示图像
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

图2

2.1.2 完善原始折线图1(辅助显示层)

# 需求:画出某城市11点到12点1小时内每分钟的温度变化折线图,温度范围在15度~18度
import random

# 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai)

# 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
plt.xticks(x[::5], x_label[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 添加描述信息
plt.xlabel("时间变化")
plt.ylabel("温度变化")
plt.title("某城市11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

图3

2.1.3 完善原始折线图2(图像层)

# 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 

# 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
plt.plot(x, y_beijing, color="b", label="北京")

# 显示图例
plt.legend()

# 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
plt.xticks(x[::5], x_label[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 添加描述信息
plt.xlabel("时间变化")
plt.ylabel("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

图4

2.1.4 多个坐标系显示

figure, axes = plt.subplots(nrows=1, ncols=2, **fig_kw)
axes[0].方法名()
axes[1]
  • 1
  • 2
  • 3

plt.subplots(面向对象的画图方法)

# 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 

# 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
# plt.figure(figsize=(20, 8), dpi=80)
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=80)

# 3、绘制图像
axes[0].plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
axes[1].plot(x, y_beijing, color="b", label="北京")

# 显示图例
axes[0].legend()
axes[1].legend()

# 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
axes[0].set_xticks(x[::5])
axes[0].set_xticklabels(x_label)
axes[0].set_yticks(range(0, 40, 5))
axes[1].set_xticks(x[::5])
axes[1].set_xticklabels(x_label)
axes[1].set_yticks(range(0, 40, 5))

# 添加网格显示
axes[0].grid(linestyle="--", alpha=0.5)
axes[1].grid(linestyle="--", alpha=0.5)

# 添加描述信息
axes[0].set_xlabel("时间变化")
axes[0].set_ylabel("温度变化")
axes[0].set_title("上海11点到12点每分钟的温度变化状况")
axes[1].set_xlabel("时间变化")
axes[1].set_ylabel("温度变化")
axes[1].set_title("北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

图5

2.1.5 常见图形种类及意义

  • 折线图plot
  • 散点图scatter
    关系/规律
  • 柱状图bar
    统计/对比
  • 直方图histogram
    分布状况
  • 饼图pie π
    占比

2.2 散点图绘制

# 需求:探究房屋面积和房屋价格的关系

# 1、准备数据
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]

y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]
# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.scatter(x, y)

# 4、显示图像
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

图6

2.3 柱状图(bar)

对比每部电影的票房收入
# 1、准备数据
movie_names = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴', '降魔传','追捕','七十七天','密战','狂兽','其它']
tickets = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制柱状图
x_ticks = range(len(movie_names))
plt.bar(x_ticks, tickets, color=['b','r','g','y','c','m','y','k','c','g','b'])

# 修改x刻度
plt.xticks(x_ticks, movie_names)

# 添加标题
plt.title("电影票房收入对比")

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 4、显示图像
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

图7

2.4 直方图(histogram)

2.4.1 直方图介绍

  • 组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数
  • 组距:每一组两个端点的差
    已知 最高175.5 最矮150.5 组距5
    求 组数:(175.5 - 150.5) / 5 = 5

2.5.2 直方图与柱状图的对比

  1. 直方图展示数据的分布,柱状图比较数据的大小。
  2. 直方图X轴为定量数据,柱状图X轴为分类数据。
  3. 直方图柱子无间隔,柱状图柱子有间隔
  4. 直方图柱子宽度可不一,柱状图柱子宽度须一致

2.5.3 直方图绘制

x = time
bins 组数 = (max(time) - min(time)) // 组距

# 需求:电影时长分布状况
# 1、准备数据
time = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制直方图
distance = 2
group_num = int((max(time) - min(time)) / distance)

plt.hist(time, bins=group_num, density=True)

# 修改x轴刻度
plt.xticks(range(min(time), max(time) + 2, distance))

# 添加网格
plt.grid(linestyle="--", alpha=0.5)

# 4、显示图像
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

图8

2.5 饼图

# 1、准备数据
movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']

place_count = [60605,54546,45819,28243,13270,9945,7679,6799,6101,4621,20105]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制饼图
plt.pie(place_count, labels=movie_name, colors=['b','r','g','y','c','m','y','k','c','g','y'], autopct="%1.2f%%")

# 显示图例
plt.legend()

plt.axis('equal')

# 4、显示图像
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

图9

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/693220
推荐阅读
相关标签
  

闽ICP备14008679号