当前位置:   article > 正文

使用snownlp对京东购物评论进行情感分析_京东评论 情感分析

京东评论 情感分析

使用snownlp对京东购物评论进行情感分析

目的:利用snownlp包,对京东评论进行情感分析
涉及: mysql,snownlp,pandas等工具包
代码结构如下:
在这里插入图片描述
注意:

  • jd_comments.csv中存储的是从京东爬取的二手苹果收集的评论,共计589条,并已标注了好评和差评
  • neg.txt 以及 pos.txt 是利用pandas对jd_comments的数据进行切分过滤得到的好评和差评的训练集
  • origin_result.csv 以及 new_result.csv 为使用原始模型以及自己训练的模型的情感分析结果(正负)

1 nlp.py 代码如下:

import snownlp
from snownlp import SnowNLP
import pandas as pd
from snownlp import sentiment
import os
import random

current_path = os.getcwd()
df_train = pd.read_csv('jd_comments.csv', header=None)

if __name__ == '__main__':
    # 1 数据收集 执行一次即可
    # df_train = pd.read_csv('jd_comments.csv', header=None)
    # df_train[df_train[2] == 3].iloc[:, 1].to_csv('pos.txt', sep='\t', index=False)
    # df_train[df_train[2] == 1].iloc[:, 1].to_csv('neg.txt', sep='\t', index=False)

    # 2 训练
    # neg_path = os.path.abspath(os.path.join(os.getcwd(), 'neg.txt'))
    # pos_path = os.path.abspath(os.path.join(os.getcwd(), 'pos.txt'))
    # mod_path = os.path.abspath(os.path.join(os.getcwd(), 'sentiment.marshal'))
    # print(mod_path)
    # sentiment.train(neg_path, pos_path)
    # sentiment.save(mod_path)

    # print(pos_path)

    # 3 随机测试
    # rand = random.randint(0, df_train.shape[0])
    # print(list(df_train.iloc[rand]))
    #
    # df_test_text = df_train.iloc[rand, 1]
    # s = SnowNLP(df_test_text)
    # print(s.sentiments)
    # print(df_train.shape[0])

    # 4 拿训练集集进行测试 识别准确率
    prob_list = []
    for i in range(0, df_train.shape[0]):
        s = SnowNLP(df_train.iloc[i, 1])
        prob = round(s.sentiments)
        prob_list.append(prob)
        # print(type(s.sentiments))
    df_train[df_train.shape[1]] = prob_list
    columns = ['good', 'content', 'eval', 'created_at', 'prob']
    df_train.columns = columns

    df_train_result = df_train.loc[:, ['content', 'eval', 'prob']]
    df_train_result['eval'] = df_train_result['eval'].map({3: 1, 1: 0})
    accurate = df_train_result[df_train_result['eval'] == df_train_result['prob']].shape[0] / df_train_result.shape[0]
    # df_train_result.to_csv('new_result.csv', index=False)
    # print('使用 新 model 识别准确率为:', accurate)

    df_train_result.to_csv('origin_result.csv', index=False)
    print('使用 原始model 识别准确率为:', accurate)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

注意:

  • 如果进行了第2步骤,使用过了自己的数据进行训练。要注意保存生成的模型。
  • 进行情感实例分析之前,需要修改模型的加载路径。(改为自己训练好的)

2 识别准确率

新训练的模型和原始模型的识别准确率对比如下:

使用 原始model 识别准确率为: 0.6932203389830508
使用 新model 识别准确率为: 0.9050847457627119
  • 1
  • 2

注意:上面是拿训练集进行测试的,正常情况是要使用新的数据来测试

3 上文中数据的收集

利用Python对京东网站二手苹果手机的评论进行爬取,并存入mysql数据库中(多余了),csv文件中。jd_crawler.py代码如下 :

import requests
from config import *
import re
import json
import math
from retrying import retry
from sql import jd_sql
import csv
# import pandas

class Jd_Comments(object):
    def __init__(self):
        self.req = Request()
        self.start_url = "https://club.jd.com/comment/productCommentSummaries.action?referenceIds=37245978364&callback=jQuery2257914&_=1567839796282"
        self.base_url = "https://sclub.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv1182&productId=37245978364&score=%s&sortType=5&page=%s" \
              "&pageSize=10&isShadowSku=0&fold=1"

        self.headers = {
            'Referer': 'https://item.jd.com/37245978364.html'
        }
        self.sql = jd_sql

    def get_num(self):
        proxies, headers = self.req.proxy(type2=0, headers=self.headers)
        response = requests.get(url=self.start_url, headers=headers, proxies=proxies)
        if response.status_code in [200, 201]:
            data = re.findall('jQuery2257914\((.*?)\);', response.text, re.S)[0]
            data_json = json.loads(data)
            CommentsCount = data_json.get('CommentsCount')[0]
            PoorCount = CommentsCount.get('PoorCount')
            GoodCount = CommentsCount.get('GoodCount')
            CommentCount = CommentsCount.get('CommentCount')
            return GoodCount, PoorCount, CommentCount
        else:
            print("获取好评数以及差评数失败!!")

    def create_urls(self, rank, num):
        urls = []
        for i in range(0, math.ceil(num/10)):
            url = self.base_url%(rank, i)
            print(url)
            urls.append(url)
        return urls

    @retry(stop_max_attempt_number=3, wait_random_min=1000, wait_random_max=2000)
    def spider_one(self, rank, url):
        proxies, headers = self.req.proxy(type2=0, headers=self.headers)
        response = requests.get(url=url, headers=headers, proxies=proxies)
        if response.status_code in [200, 201] and response.text:
            data = re.findall('fetchJSON_comment98vv1182\((.*?)\);', response.text, re.S)[0]
            data_json = json.loads(data)
            comments = data_json.get('comments')
            if comments:
                items = []
                for one in comments:
                    item = {}
                    item['good'] = '二手apple ' + one.get('referenceId')
                    item['content'] = one.get('content').replace('\n', '')
                    item['eval'] = rank
                    item['created_at'] = one.get('creationTime')
                    # 数据转存至mysql数据库中
                    # self.sql.insert_one(item)

                    # 数据保存到本地的csv文件中
                    self.save_to_csv(filename='jd_comments', item=item.values())
                    print(item)
                    if item:
                        items.append(item)
                return items
            else:
                return False
        else:
            print("访问失败!!")
            
    def spider_many(self):
        GoodCount, PoorCount, CommentCount = self.get_num()
        print(GoodCount, PoorCount, CommentCount)
        good_urls = self.create_urls(rank=3, num=GoodCount)
        for g_url in good_urls:
            result = self.spider_one(rank=3, url=g_url)
            if not result:
                break
        # print("111111111111111111111111111111111111111111111111111")
        poor_urls = self.create_urls(rank=1, num=PoorCount)
        page = 0
        for p_url in poor_urls:
            print('page: ', page)
            page += 1
            result = self.spider_one(rank=1, url=p_url)
            if not result:
                break
    def save_to_csv(self, filename=None, item=[]):
        name = '{}.csv'.format(filename)
        with open(name, 'a', encoding='utf-8-sig') as f:
            f_csv = csv.writer(f)
            f_csv.writerow(item)
            # f_csv.writerows(rows)

if __name__ == '__main__':
    jd_comment = Jd_Comments()
    jd_comment.spider_many()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101

得到的数据保存在mysql数据库以及jd_comments.csv文件中。如下(mysql):
在这里插入图片描述

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号