赞
踩
监督学习是机器学习的类型,其中机器使用“标记好”的训练数据进行训练,并基于该数据,机器预测输出。标记的数据意味着一些输入数据已经用正确的输出标记。
在监督学习中,提供给机器的训练数据充当监督者,教导机器正确预测输出。它应用了与学生在老师的监督下学习相同的概念。
监督学习是向机器学习模型提供输入数据和正确输出数据的过程。监督学习算法的目的是找到一个映射函数来映射输入变量(x)和输出变量(y)。
在现实世界中,监督学习可用于风险评估、图像分类、欺诈检测、垃圾邮件过滤等。
在监督学习中,模型使用标记数据集进行训练,其中模型学习每种类型的数据。训练过程完成后,模型会根据测试数据(训练集的子集)进行测试,然后预测输出。
通过以下示例和图表可以很容易地理解监督学习的工作原理:
监督学习可以进一步分为两类问题:回归和分类。
1.回归
如果输入变量和输出变量之间存在关系,则使用回归算法。它用于预测连续变量,例如天气预报、市场趋势等。以下是一些流行的回归算法,它们属于监督学习:
2.分类
当输出变量是分类时使用分类算法,这意味着有两个类别,例如是 - 否,男性 - 女性,真假等。垃圾邮件过滤,是否为垃圾等。
可能用到的算法:
在上一个主题中,我们学习了监督机器学习,其中模型在训练数据的监督下使用标记数据进行训练。但是在很多情况下,我们没有标记数据,需要从给定的数据集中找到隐藏的模式。因此,要解决机器学习中的此类案例,我们需要无监督学习技术。
顾名思义,无监督学习是一种机器学习技术,其中模型不使用训练数据集进行监督。相反,模型本身会从给定数据中找到隐藏的模式和见解。它可以比作在学习新事物时发生在人脑中的学习。它可以定义为:
监督学习是一种机器学习,其中模型使用未标记的数据集进行训练,并允许在没有任何监督的情况下对该数据进行操作。
无监督学习不能直接应用于回归或分类问题,因为与监督学习不同,我们有输入数据但没有相应的输出数据。无监督学习的目标是找到数据集的底层结构,根据相似性对数据进行分组,并以压缩格式表示该数据集。
示例: 假设给定无监督学习算法的输入数据集,其中包含不同类型的猫和狗的图像。该算法从未在给定的数据集上进行过训练,这意味着它对数据集的特征一无所知。无监督学习算法的任务是自行识别图像特征。无监督学习算法将通过根据图像之间的相似性将图像数据集聚类到组中来执行此任务。
以下是描述无监督学习重要性的一些主要原因:
下图可以理解无监督学习的工作原理:
在这里,我们采用了未标记的输入数据,这意味着它没有分类,也没有给出相应的输出。现在,这些未标记的输入数据被输入机器学习模型以对其进行训练。首先,它将解释原始数据以从数据中找到隐藏的模式,然后应用合适的算法,如 k-means 聚类、决策树等。
一旦应用了合适的算法,该算法就会根据对象之间的相似性和差异性将数据对象分组。
无监督学习算法可以进一步分为两类问题:聚类和关联
以下是一些流行的无监督学习算法:
联系我v:hxgsrubxjogxeeag
如果python基础不好,可以参考学习我的python专栏,进阶可参考我的数学建模专栏,想要跟多的免费刷题练习,推荐使用:牛客网
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。