赞
踩
Keras卷积神经网络识别手写数字
卷积神经网络和多层感知机的差别就在于CNN多了卷积层和池化层,这两个层的层数可以自行设定,
和用多层感知机相比只有建立卷积层那里不同
- from keras.datasets import mnist
- from keras.utils import np_utils
- import numpy as np
- np.random.seed(10)
- #读取数据
- (x_Train,y_Train),(x_Test,y_Test)=mnist.load_data()
- #将数字图像特征值转化为4D
- x_Train4D=x_Train.reshape(x_Train.shape[0],28,28,1).astype('float32')
- x_Test4D=x_Test.reshape(x_Test.shape[0],28,28,1).astype('float32')
- #标准化
- x_Train4D_normalize=x_Train4D/255
- x_Test4D_normalize=x_Test4D/255
- #标签的热码转换
- y_TrainOneHot=np_utils.to_categorical(y_Train)
- y_TestOneHot=np_utils.to_categorical(y_Test)
- from keras.models import Sequential
- from keras.layers import Dropout,Dense,Flatten,Conv2D,MaxPooling2D #CNN中的层
- model=Sequential()
- #建立卷积层1
- #16个滤镜,每个滤镜(5,5),卷积产生的图像大小不变,单色灰度图
- model.add(Conv2D(filters=16,kernel_size=(5,5),padding='same',input_shape=(28,28,1),activation='relu'))
- #建立池化层1
- model.add(MaxPooling2D(pool_size=(2,2)))
- #建立卷积层2
- #36个滤镜,每个滤镜(5,5),卷积产生的图像大小不变,单色灰度图
- model.add(Conv2D(filters=36,kernel_size=(5,5),padding='same',input_shape=(28,28,1),activation='relu'))
- #建立池化层2
- model.add(MaxPooling2D(pool_size=(2,2)))
- model.add(Dropout(0.25))
- #建立平坦层
- model.add(Flatten())
- #建立隐藏层
- model.add(Dense(128,activation='relu'))
- model.add(Dropout(0.5))
- #建立输出层
- model.add(Dense(10,activation='softmax'))#10个神经元,10个数字
- print(model.summary())

- #进行训练
- #compile对训练模型进行设置
- #loss为交叉熵,adam优化器,metrics模型评估的方式是准确率
- model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
- train_history=model.fit(x=x_Train4D_normalize,y=y_TrainOneHot,validation_split=0.2,
- epochs=10,batch_size=300,verbose=2)
- import matplotlib.pyplot as plt
- def show_train_history(train_history,train,validation):
- plt.plot(train_history.history[train])
- plt.plot(train_history.history[validation])
- plt.title('train history')
- plt.xlabel('Epoch')
- plt.ylabel('train')
- plt.legend(['train','validation'],loc='upper left')
- plt.show()
- show_train_history(train_history,'acc','val_acc')
show_train_history(train_history,'loss','val_loss')
- #评估模型准确率
- scores=model.evaluate(x_Test4D_normalize,y_TestOneHot)
- print('accuracy=',scores[1])
- #进行预测
- prediction=model.predict_classes(x_Test4D_normalize)
- prediction[:10]
- def plot_images_labels_prediction(image,labels,prediction,idx,num=10):
- #num要显示的数据项数,默认为10,最大25
- fig=plt.gcf()
- fig.set_size_inches(12,14)
- if num>25:num=25
- for i in range(0,num):
- ax=plt.subplot(5,5,1+i)
- ax.imshow(image[idx],cmap='binary')
- title="label="+str(labels[idx])
- itle='label='+str(labels[idx])
- if(len(prediction)>0):
- title+=",prediction="+str(prediction[idx])
- ax.set_title(title,fontsize=10)
- ax.set_xticks([])
- ax.set_yticks([])
- idx+=1
- plt.show()
- plot_images_labels_prediction(x_Test,y_Test,prediction,idx=0)

- #建立混淆矩阵
- import pandas as pd
- pd.crosstab(y_Test,prediction,rownames=['label'], colnames=['predict'])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。