赞
踩
Radon变换的旋转过程可以使用ndimage.rotate()对图像进行特定角度的旋转,但这个过程比较耗时,不利于投影角度较多或者需要对批量图像进行Radon变换的情况。而通过利用PyTorch中的仿射变换相关函数affine_grid()和grid_sample()也可以实现旋转的过程,可以在GPU上进行运算,Radon变换所需的时间大幅减少。
from scipy import ndimage import numpy as np import matplotlib.pyplot as plt import imageio from cv2 import cv2 import torch import torchvision.transforms as transforms from torch.nn import functional as F import math def DiscreteRadonTransform(image, viewnum, batchSize): # image: batchSize*imgSize*imgSize channels = len(image[0]) res = torch.zeros((channels, viewnum)) res = res.cuda() for s in range(viewnum): angle = -math.pi - 180/viewnum*(s+1) * math.pi / 180 A = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) theta = np.array([[A[0, 0], A[0, 1], 0], [A[1, 0], A[1, 1], 0]]) theta = torch.from_numpy(theta).type(torch.FloatTensor) theta = theta.unsqueeze(0) theta = theta.cuda() image_temp = torch.from_numpy(image).type(torch.FloatTensor) image_temp = image_temp.unsqueeze(1) image_temp = image_temp.cuda() theta = theta.repeat(batchSize,1,1) grid = F.affine_grid(theta, torch.Size((batchSize,1,512,512))) rotation = F.grid_sample(image_temp, grid) rotation = torch.squeeze(rotation) res[:,s] = torch.sum(rotation,dim=0) return res
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。